Катод и анод - единство и борьба противоположностей. Анод и катод что это


Анод и катод - что это и как правильно определить?

Про анод и катод источника питания необходимо знать тем, кто занимается практической электроникой. Что и как называют? Почему именно так? Будет углублённое рассмотрение темы с точки зрения не только радиолюбительства, но и химии. Наиболее популярное объяснение звучит следующим образом: анод – это положительный электрод, а катод – отрицательный. Увы, это не всегда верно и неполно. Чтобы уметь определить анод и катод, необходимо иметь теоретическую базу и знать, что да как. Давайте рассмотрим это в рамках статьи.

Анод

анод и катодОбратимся к ГОСТ 15596-82, который занимается химическими источниками тока. Нас интересует информация, размещённая на третьей странице. Согласно ГОСТу, отрицательным электродом химического источника тока является именно анод. Вот так да! А почему именно так? Дело в том, что именно через него электрический ток входит из внешней цепи в сам источник. Как видите, не всё так легко, как кажется на первый взгляд. Можно посоветовать внимательно рассматривать представленные в статье картинки, если содержимое кажется слишком сложным – они помогут понять, что же автор хочет вам донести.

Катод

Обращаемся всё к тому же ГОСТ 15596-82. Положительным электродом химического источника тока является тот, при разряде из которого он выходит во внешнюю цепь. Как видите, данные, содержащиеся в ГОСТ 15596-82, рассматривают ситуацию с другой позиции. Поэтому при консультировании с другими людьми насчет определённых конструкций необходимо быть очень осторожным.

Возникновение терминов

между катодом и анодом Их ввёл ещё Фарадей в январе 1834 года, чтобы избежать неясности и добиться большей точности. Он предлагал и свой вариант запоминания на примере с Солнцем. Так, у него анод – это восход. Солнце движется вверх (ток входит). Катод – это заход. Солнце движется вниз (ток выходит).

Пример радиолампы и диода

анод и катод у диодаПродолжаем разбираться, что для обозначения чего используется. Допустим, один из данных потребителей энергии у нас имеется в открытом состоянии (в прямом включении). Так, из внешней цепи диода в элемент по аноду входит электрический ток. Но не путайтесь благодаря такому объяснению с направлением электронов. Через катод во внешнюю цепь из используемого элемента выходит электрический ток. Та ситуация, что сложилась сейчас, напоминает случаи, когда люди смотрят на перевёрнутую картину. Если данные обозначения сложные – помните, что разбираться в них таким образом обязательно исключительно химикам. А сейчас давайте сделаем обратное включение. Можно заметить, что полупроводниковые диоды практически не будут проводить ток. Единственное возможное здесь исключение – обратный пробой элементов. А электровакуумные диоды (кенотроны, радиолампы) вообще не будут проводить обратный ток. Поэтому и считается (условно), что он через них не идёт. Поэтому формально выводы анод и катод у диода не выполняют свои функции.

Почему существует путаница?

Специально, чтобы облегчить обучение и практическое применение, было решено, что диодные элементы названия выводов не будут менять зависимо от своей схемы включения, и они будут «прикреплены» к физическим выводам. Но это не относится к аккумуляторам. Так, у полупроводниковых диодов всё зависит от типа проводимости кристалла. В электронных лампах этот вопрос привязан к электроду, который эмитирует электроны в месте расположения нити накала. Конечно, тут есть определённые нюансы: так, через такие полупроводниковые приборы, как супрессор и стабилитрон, может немного протекать обратный ток, но здесь существует специфика, явно выходящая за рамки статьи.

Разбираемся с электрическим аккумулятором

потенциал катода потенциал анодаЭто по-настоящему классический пример химического источника электрического тока, что является возобновляемым. Аккумулятор пребывает в одном из двух режимов: заряд/разряд. В обоих этих случаях будет разное направление электрического тока. Но обратите внимание, что полярность электродов при этом меняться не будет. И они могут выступать в разных ролях:

  1. Во время зарядки положительный электрод принимает электрический ток и является анодом, а отрицательный его отпускает и именуется катодом.
  2. При отсутствии движения о них разговор вести нет смысла.
  3. Во время разряда положительный электрод отпускает электрический ток и является катодом, а отрицательный принимает и именуется анодом.

Об электрохимии замолвим слово

Здесь используют немного другие определения. Так, анод рассматривается как электрод, где протекают окислительные процессы. И вспоминая школьный курс химии, можете ответить, что происходит в другой части? Электрод, на котором протекают восстановительные процессы, называется катодом. Но здесь нет привязки к электронным приборам. Давайте рассмотрим ценность окислительно-восстановительных реакций для нас:

  1. Окисление. Происходит процесс отдачи частицей электрона. Нейтральная превращается в положительный ион, а отрицательная нейтрализуется.
  2. Восстановление. Происходит процесс получения частицей электрона. Положительная превращается в нейтральный ион, а потом в отрицательный при повторении.
  3. Оба процесса являются взаимосвязанными (так, количество электронов, что отданы, равняется присоединённому их числу).

Также Фарадеем для обозначения были введены названия для элементов, что принимают участие в химических реакциях:

  1. Катионы. Так называются положительно заряженные ионы, что двигаются в растворе электролита в сторону отрицательного полюса (катода).
  2. Анионы. Так называются отрицательно заряженные ионы, что двигаются в растворе электролита в сторону положительного полюса (анода).

Как происходят химические реакции?

определить анод и катодОкислительная и восстановительная полуреакции являются разделёнными в пространстве. Переход электронов между катодом и анодом осуществляется не непосредственно, а благодаря проводнику внешней цепи, на котором создаётся электрический ток. Здесь можно наблюдать взаимное превращение электрической и химической форм энергии. Поэтому для образования внешней цепи системы из проводников разного рода (коими являются электроды в электролите) и необходимо пользоваться металлом. Видите ли, напряжение между анодом и катодом существует, как и один нюанс. И если бы не было элемента, что мешает им напрямую произвести необходимый процесс, то ценность источников химического тока была бы весьма низка. А так, благодаря тому, что заряду необходимо пройтись по той схеме, была собрана и работает техника.

Что есть что: шаг 1

напряжение между анодом и катодомТеперь давайте будем определять, что есть что. Возьмём гальванический элемент Якоби-Даниэля. С одной стороны он состоит из цинкового электрода, который опущен в раствор сульфата цинка. Затем идёт пористая перегородка. И с другой стороны имеется медный электрод, который расположен в растворе сульфата меди. Они соприкасаются между собой, но химические особенности и перегородка не дают смешаться.

Шаг 2: Процесс

Происходит окисление цинка, и электроны по внешней цепи двигаются к меди. Так получается, что гальванический элемент имеет анод, заряженный отрицательно, и катод - положительный. Причем данный процесс может протекать только в тех случаях, когда электронам есть куда «идти». Дело в том, что попасть напрямую от электрода к другому мешает наличие «изоляции».

Шаг 3: Электролиз

гальванический элемент анод и катодДавайте рассмотрим процесс электролиза. Установка для его прохождения является сосудом, в котором имеется раствор или расплав электролита. В него опущено два электрода. Они подключены к источнику постоянного тока. Анод в этом случае – это электрод, который подключен к положительному полюсу. Здесь происходит окисление. Отрицательно заряженный электрод – это катод. Здесь протекает реакция восстановления.

Шаг 4: Напоследок

Поэтому при оперировании данными понятиями всегда необходимо учитывать, что анод не в 100% случаев используется для обозначения отрицательного электрода. Также катод периодически может лишаться своего положительного заряда. Всё зависит от того, какой процесс на электроде протекает: восстановительный или окислительный.

Заключение

Вот таким всё и является – не очень сложно, но не скажешь, что и просто. Мы рассмотрели гальванический элемент, анод и катод с точки зрения схемы, и сейчас проблем с соединением источников питания с наработками у вас быть не должно. И напоследок нужно оставить ещё немного ценной для вас информации. Всегда приходится учитывать разницу, которую имеет потенциал катода/потенциал анода. Дело в том, что первый всегда будет немного большим. Это из-за того, что коэффициент полезного действия не работает с показателем в 100 % и часть зарядов рассеивается. Именно из-за этого можно увидеть, что аккумуляторы имеют ограничение на количество раз заряда и разряда.

fb.ru

Катод и анод - это плюс или минус?

Изучение таких отраслей, как электрохимия и цветная металлургия, невозможно без понимания в полной мере терминов катод и анод. В то же время эти термины являются неотъемлемой частью вакуумных и полупроводниковых электронных приборов.

Вакуумные и полупроводниковые компоненты

Катод и анод в электрохимии

Под электрохимией следует понимать раздел физической химии, изучающий химические процессы, вызываемые воздействием электрического тока, а также электрические явления, вызываемые химическими процессами. Существует два основных вида электрохимических операций:

  • Процедура преобразования электрического воздействия в химическую реакцию, называемая электролизом;
  • Процедура преобразования химической реакции в электрический ток, называемая гальваническим процессом.

Гальванический элемент в электрохимии

В электрохимии под терминами анод и катод понимают следующее:

  1. Электрод, на котором проходит окислительная реакция, называется анодом;
  2. Электрод, на котором осуществляется процедура восстановления, называется катодом.

Под процессами окисления стоит понимать процедуру, при которой частица отдает электроны. Восстановительный процесс подразумевает процедуру принятия электронов частицей. Соответственно, частицы, которые отдают электроны, именуются «восстановителями», и они подвержены окислению. Частицы, которые принимают электроны, именуются «окислителями», они восстанавливаются.

Цветная металлургия широко использует процесс электролиза для выделения металлов из добытых руд и дальнейшей очистки. В процедуре электролиза применяются растворимые и нерастворимые аноды, а сами процессы называются электрорафинированием и электроэкстракцией, соответственно.

Катод в вакуумных приборах

Одной из разновидностей электровакуумных приборов является электронная лампа. Предназначение электроламп – регулирование потока электронов, дрейфующих в вакууме между другими электродами. Конструктивно электролампа выглядит как герметичный сосуд-баллон, с помещенными в середине мелкими металлическими выводами. Численность выводов зависит от вида радиолампы.

Устройство электронной лампы

В составе любой радиолампы такие элементы:

  • Катод;
  • Анод;
  • Сетка.

Катодом электролампы подразумевается разогретый электрод, подключенный к «минусу» блока питания и испускающий электроны, будучи накаленным. Эти электроны движутся к аноду, подключенному к «плюсу». Процесс испускания электронов разогретым катодом называется термоэмиссией, а возникший при этом ток именуется током термоэмиссии. Метод нагрева обуславливает разновидности катодов:

  • Катод прямого разогрева;
  • Катод непрямого разогрева.

Катодом непосредственного накала является прочный вольфрамовый проводник большого сопротивления. Прогревание катода проходит путем подвода к нему напряжения.

Важно! К особенностям электронных ламп непосредственного нагрева относятся быстрый запуск лампы в работу при меньшем потреблении мощности, хотя за счет срока службы. Поскольку питающий ток таких ламп является постоянным, то ограничено их применение в среде переменного тока.

Электролампы, у которых внутри катода, выполненного в виде цилиндра, размещена нагревающая нить, называются радиолампами косвенного нагрева.

Конструктивно анод выглядит в виде пластины либо коробочки, размещенной вокруг катода с сеткой и имеющей потенциал, обратный катоду. Дополнительные электроды, размещенные между анодом и катодом, называются сеткой и применяются для регулировки потока электронов.

Катод у полупроводниковых приборов

К полупроводниковым приборам относятся устройства, состоящие из вещества, удельное электрическое сопротивление которого больше сопротивления проводника, но меньше сопротивления диэлектрика. К особенностям таких приборов относится большая зависимость электропроводимости от концентрации добавок и влияния электрическим током. Свойства p-n перехода определяют принципы работы большей части полупроводниковых компонентов.

Наиболее простым представителем полупроводниковых компонентов является диод. Это элемент, имеющий два вывода и один p-n переход, отличительной особенностью которого выступает протекание тока в одном направлении.

Диод полупроводниковый

Отводы компонента называются анод и катод. Протекание тока по элементу возможно при подключении «плюса» к аноду и «минуса» – к катоду. При противоположном подсоединении элемент запирается, и ток не протекает.

Такие словосочетания, как анод и катод, в полной мере применяются в приборостроении и индустрии, будь то электрохимия, вакуумные приборы или полупроводниковые приборы. Усвоение многих процессов затруднительно или невозможно без понимания терминов анод и катод.

Видео

Оцените статью:

elquanta.ru

Катоды и аноды отрицательно и положительно заряженные электроды

Катод – это электрод устройства, который подключен к отрицательному полюсу источнику тока. Анод – противоположность ему. Это электрод прибора, подключенный к положительному полюсу источника тока.

Окислительно-восстановительный процесс на электродах

Обратите внимание! Чтобы легче запомнить разницу между ними, используют шпаргалку. В словах «катод»-«минус», «анод»-«плюс» одинаковое число букв.

Применение в электрохимии

В этом разделе химии катод – это отрицательно заряженный электрический проводник (электрод), притягивающий к себе положительно заряженные ионы (катионы) во время процессов окисления и восстановления.

Электролитическое рафинирование – это электролиз сплавов и водных растворов. Большинство цветных металлов подвергаются такой очистке. При помощи электролитической очистки получается металл с высокой чистотой. Так, степень чистоты меди после рафинирования достигает 99,99%.

Электролиз меди

На положительном электрическом проводнике во время рафинирования или очистки проходит электролитический процесс. Во время него металл с примесями помещают в электролизер и делают анодом. Такие процессы проводятся при помощи внешнего источника электрической энергии и называются реакциями электролиза. Осуществляются в электролизерах. Он выполняет функцию электронасоса, нагнетающего отрицательно заряженные частицы (электроны) в отрицательный проводник и удаляющего его из анода. Откуда исходит ток, неважно.

На катоде очищается металл от посторонних примесей. Простой катод изготавливается из вольфрама, иногда – из тантала. Достоинством вольфрамового отрицательного электрода является стойкость его изготовления. Из недостатков – имеет низкую эффективность и неэкономичность. Сложные катоды имеют разное устройство. У многих таких типов проводников на чистый металл сверху наносится специальный слой, который активирует получение большей производительности при относительно низких температурах. Они очень экономичны. Их недостаток состоит в небольшой устойчивости производительности.

Готовый чистый металл тоже называется катодом. Например, цинковый или платиновый катод. На производстве отрицательный проводник отделяют от катодной основы при помощи катодосдирочных машин.

При удалении отрицательно заряженных частиц из электрического проводника на нем создается анод, а при нагнетании отрицательно заряженных частиц на электрический проводник – катод. При электролизе очищаемого металла его положительные ионы притягивают к себе отрицательно заряженные частицы на отрицательном проводнике, и происходит восстановительный процесс. Чаще всего используют такие аноды:

  • цинковые;
  • кадмиевые;
  • медные;
  • никелевые;
  • оловянные;
  • золотые;
  • серебряные;
  • платиновые.

Чаще всего на производстве используют цинковые аноды. Они бывают:

  • катанные;
  • литые;
  • сферические.

Больше всего применяют катанные цинковые аноды. Еще используют никелевые и медные. А вот кадмиевые почти не используются из-за их токсичности для экологии. Бронзовые и оловянные аноды применяют при изготовлении радиоэлектронных печатных плат.

Гальванизация (гальваностегия) – процесс нанесения тонкого слоя металла на другой предмет с целью предотвращения коррозии изделия, окисления контактов в электронике, износостойкости, декорации. Суть процесса такая же, как при рафинировании.

Цинк и олово используют для повышения стойкости изделия при коррозии. Цинкование бывает холодным, горячим, гальваническим, газотермическим и термодиффузионным. Золото используют в основном в защитно-декоративных целях. Серебро повышает стойкость контактов электроприборов к окислению. Хром – для увеличения износостойкости и защиты от коррозии. Хромирование придает изделиям красивый и дорогой вид. Используется для нанесения на ручки, краны, колесные диски и т.д. Процесс хромирования токсичен, поэтому строго регламентируется законодательством разных стран. Ниже на картинке представлен метод гальванизации при помощи никеля.

Никелирование чайника методом гальванизации

Применение в вакуумных электронных приборах

Здесь катод выступает источником свободных электродов. Они образуются в ходе их выбивания из металла при высоких температурах. Положительно заряженный электрод притягивает электроны, выпущенные отрицательным проводником. В разных аппаратах он в разной степени собирает их в себя. В электронных трубках он полностью притягивает отрицательно заряженные частицы, а в электронно-лучевых приборах – частично, формируя в завершении процесса электронный луч.

Маркировка

Стандартно катод маркируют как «-». Знак анода –  «+». А вот в гальванике, из-за того, что отрицательный заряд на проводнике снабжается не источником тока извне, а реакцией окисления металла, катод получит положительный заряд электрического проводника. Поэтому в аккумуляторах, когда ток меняет направление, происходит смена знаков «+» и «-».

Эти свойства катодов и анодов нашли широкое применение в промышленности при очистке металла и в гальваностегии.

Видео

Оцените статью:

elquanta.ru

Как определить анод и катод

Определить, какой из электродов является анодом, а какой – катодом, на 1-й взор кажется легко. Принято считать, что анод имеет негативный заряд, катод – правильный. Но на практике могут появиться путаницы в определении.

Инструкция

1. Анод – электрод, на котором протекает реакция окисления. А электрод, на котором происходит поправление, именуется катодом.

2. Возьмите для примера гальванический элемент Якоби-Даниэля. Он состоит из цинкового электрода, опущенного в раствор сульфата цинка, и медного электрода, находящегося в растворе сульфата меди. Растворы соприкасаются между собой, но не смешиваются – для этого между ними предусмотрена пористая перегородка.

Как определить анод и катод

3. Цинковый электрод, окисляясь, отдает свои электроны, которые по внешней цепи двигаются к медному электроду. Ионы меди из раствора СuSO4 принимают электроны и восстанавливаются на медном электроде. Таким образом, в гальваническом элементе анод заряжен негативно, а катод – одобрительно.

Как определить анод и катод

4. Сейчас разглядите процесс электролиза. Установка для электролиза представляет собой сосуд с раствором либо расплавом электролита, в тот, что опущены два электрода, подключенные к источнику непрерывного тока. Негативно заряженный электрод является катодом – на нем происходит поправление. Анод в данном случае электрод, подключенный к правильному полюсу. На нем происходит окисление.

Как определить анод и катод

5. Скажем, при электролизе раствора СuCl2 на аноде происходит поправление меди. На катоде же происходит окисление хлора.

Как определить анод и катод

6. Следственно учтите, что анод – не неизменно негативный электрод, так же как и катод не во всех случаях имеет правильный заряд. Фактором, определяющим электрод, является происходящий на нем окислительный либо восстановительный процесс.

Диод имеет два электрода, называемые анодом и катодом. Он горазд проводить ток от анода к катоду, но не напротив. Маркировка, объясняющая предназначение итогов, имеется не на всех диодах .

Инструкция

1. Если маркировка имеется, обратите внимание на ее внешний вид и расположение. Она выглядит как стрелка, упирающаяся в пластину. Направление стрелки совпадает с прямым направлением тока, происходящего через диод. Иными словами, стрелке соответствует анодный итог, а пластине — катодный.

2. Аналоговые многофункциональные измерительные приборы имеют разную полярность напряжения, приложенного к щупам в режиме омметра. У некоторых из них она такая же, как в режиме вольтметра либо амперметра, у других — противоположная. Если она вам незнакома, возьмите диод, имеющий маркировку, переключите прибор в режим омметра, позже чего подключите к диоду вначале в одной, а потом в иной полярности. При варианте, в котором стрелка отклоняется, запомните, какой электрод диода был подключен к какому из щупов. Сейчас, подключая щупы в разной полярности к иным диодам, вы сумеете определять расположение их электродов.

3. У цифровых приборов в большинстве случаев полярность подключения щупов во всех режимах совпадает. Переключите мультиметр в режим проверки диодов — рядом с соответствующим расположением переключателя имеется обозначение этой детали. Алый щуп соответствует аноду, черный — катоду. В верной полярности будет показано прямое падение напряжения на диоде, в неправильной же индицируется бесконечность.

4. Если под рукой измерительного прибора нет, возьмите батарейку от материнской платы, светодиод и резистор на один килоом. Объедините их ступенчато, подключив светодиод в такой полярности, дабы светодиод светился. Сейчас включите в обрыв этой цепи проверяемый диод, экспериментально подобрав такую полярность, дабы светодиод засветился вновь. Итог диода, обращенный к плюсу батарейки — анодный.

5. Если при проверке обнаружится, что диод непрерывно открыт либо непрерывно закрыт, и от полярности ничего не зависит, значит он неисправен. Замените его, заранее удостоверясь в том, что его выход из строя не обусловлен неисправностью других деталей. В этом случае вначале замените и их.

Обратите внимание! Все перепайки исполняйте при обесточенной аппаратуре и разряженных конденсаторах. Диод проверяйте в выпаянном виде.

jprosto.ru

Катод и анод - единство и борьба противоположностей

Катод и анод – это две составляющие одного процесса: протекания электрического тока. Все материалы можно разделить на два типа – это проводники, в структуре которых большой избыток свободных электронов, и диэлектрики (в них свободных электронов практически нет).

Понятие электрического тока

как определить катод и анодЭлектрический ток – это упорядоченное перемещение заряженных элементарных частиц в структуре вещества под воздействием электромагнитного напряжения. Если приложить к проводнику постоянное напряжение, то свободные электроны, имеющие отрицательный заряд, начнут упорядоченно двигаться в сторону анода (положительно заряженного электрода) от катода (отрицательно заряженного электрода). Ток же, соответственно, будет течь в обратном направлении. А катод и анод – это два электрода, между которыми образовался перепад (разница) электромагнитного напряжения.

Проводники и диэлектрики

Проводники и диэлектрики могут быть твердыми, жидкими и газообразными веществами. Это для протекания электрического тока совсем не принципиально. При длительном приложении электромагнитного напряжении к материалу на катоде будет образовываться избыток электронов, а на аноде – его недостача. Если напряжение прилагается достаточно долго, то из структуры материала, из которого сделан анод, будут вырываться связанные электроны вместе с атомами, а сам материал начнет вступать в химическую реакцию с химически активными веществами из окружающей среды. Такой процесс носит название электролиза.

Электролиз

Катод и анод в электрохимии являются двумя полюсами приложенного к солевым растворам или расплавам постоянного электромагнитного напряжения. При возникновении тока от избытка электронов анод начинает разрушаться, т.е. сами положительно заряженные атомы вещества будут попадать в соляной раствор (окружающую среду) и переноситься на катод, где оседать в очищенном виде. Этот процесс носит название гальванического. С помощью гальваники покрывают тонким слоем цинка, меди, золота, серебра и других металлов различные изделия.

катод и анод

Что такое катод и каковы задачи, которые он выполняет в электролизе? Это можно понять при выполнении следующих действий: если сделать анод из бронзы или олова, то на катоде получится печатная плата, покрытая тонким слоем меди или олова (используется в радиоэлектронной промышленности). Этим же способом получают позолоченные ювелирные украшения, омедненные и даже позолоченные алюминиевые наконечники для электротехники в целях повышения электропроводности.

Ответы на вопросы о том, что такое анод и катод, при электролизе очевидны: анод в результате протекания постоянного тока через соляной раствор разрушается, а катод принимает на себя анодный материал. Даже термин такой возник в среде гальваников – «анодирование катода». Физического смысла он не несет, но фактическую суть вопроса отображает прекрасно.

Полупроводники

Полупроводники представляют собой материалы, которые в структуре не имеют свободных электронов, а атомные держатся на своих местах плохо. Если такой материал в жидком или газообразном состоянии поместить в магнитное поле, а затем дать ему затвердеть, то получится электрически структурированный полупроводник, который будет пропускать ток только в одну сторону. что такое анодИз этого материала, используя вышеназванное свойство, делают диоды. Они бывают двух видов:

а) с «p-n-p» проводимостью;

б) с «n-p-n» проводимостью.

На практике эта тонкость структуры диодов значения не имеет. Важно правильно подключить в электрическую схему диод. Где анод, где катод – вопрос, которым многие озадачены. На диоде есть специальные обозначения: или А и К, или + и –. Можно подключить диод только двумя способами к электрической схеме постоянного тока. В одном случае исправный диод будет проводить ток, а в другом – не будет. Поэтому необходимо взять прибор, на котором заведомо известно, где катод, а где анод, и подключить его к диоду. Если устройство покажет наличие тока, то диод подключен правильно. Значит, катод прибора и катод диода, а также анод прибора и анод диода совпали. В противном случае нужно поменять соединения местами.

1. Если диод не пропускает ток в обе стороны, то он перегоревший, ремонту не подлежит.

2. Если наоборот, пропускает, то он пробитый. Его необходимо выбросить.

Проверяются диоды тестерами и пробниками. В диодах катод и анод жестко привязаны к их материальному исполнению в отличие от гальванических источников питания (аккумуляторов, батареек и т. п.).

диод где анод где катодКатодом в полупроводниковых элементах (диодах) электрической схемы является электрод (ножка), из которого выходит положительный (+) потенциал. Через схему он связан с отрицательным потенциалом источника питания. Значит, ток непосредственно в полупроводнике диода протекает по направлению от анода к катоду. На электрических схемах этот процесс символически так и обозначается.

Если диод одной ножкой (электродом) подключить к переменному напряжению, то на втором электроде мы получим положительную или отрицательную полусинусоиду. Если соединить два диода в мост, то будем наблюдать выпрямленный электрический практически постоянный ток.

Гальванические источники постоянного тока – аккумуляторы (батареи)

Катод и анод в этих изделиях меняются местами в зависимости от направления протекания электрического тока, потому что в одном случае к ним напряжение не приходит, а они сами за счет химической реакции служат источниками постоянного тока. Тут отрицательным электродом уже будет анод, а положительным – катод. В другом же случае в аккумуляторе происходит обычный процесс электролиза.что такое катод

Когда аккумулятор разрядился и химическая реакция, которая служила источником электрического тока, прекратилась, его необходимо зарядить с помощью внешнего источника питания. Таким образом, мы запускаем процесс электролиза, т.е. восстановления первоначальных свойств гальванической батареи. На катод аккумулятора необходимо приложить уже отрицательный заряд, а на анод – положительный, тогда батарея будет заряжаться.

Таким образом, ответ на вопрос о том, как определить катод и анод в гальваническом элементе, зависит от того, заряжается он или служит источником питания электрическим током.

Вывод

Как суммирование всего вышесказанного, катод – это электрод, на котором появляется избыток электронов, а анод – это электрод, на котором появляется недостача электронов. Но плюс или минус на конкретном электроде элемента электрической схемы определяется направлением протекания электрического тока.

fb.ru

Назначение диода, анод диода, катод диода, как проверить диод мультиметром

Назначение диода - проводить электрический ток только в одном направлении. Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.

Условное обозначение диода на схемеУсловное обозначениедиода на схеме

На рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода - это вывод, который подключается к положительному выводу источника питания, непосредственно или через элементы схемы. Катод диода - это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к источнику переменного напряжения, то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.

Как проверить диод мультиметром

Выводы диодаВыводы диода

Как проверить диод мультиметром или тестером - такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах - диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному - катодом диода. Проверка диодов очень похожа на проверку транзисторов.

m.katod-anod.ru

Что такое электролиз? Анод и катод. Физико-химический процесс

Образование 26 июля 2015

Долгое время людям не удавалось получать многие чистые вещества в свободном виде. Такие, например, как:

  • металлы;
  • щелочи;
  • хлор;
  • водород;
  • перекись водорода;
  • хлорорганика и прочие.

Их получали либо с большим содержанием примесей, от которых невозможно было избавиться, либо не синтезировали вовсе. А ведь соединения очень важные для использования в промышленности и быту. Но с открытием такого процесса, как электролиз, задача огромного масштаба была решена. Сегодня он применяется не только для синтеза, но и для многих других процессов.

что такое электролиз

Что такое электролиз? Как он происходит, из каких этапов складывается, в чем заключается основное преимущество данного метода, попробуем разобраться в ходе статьи.

Что такое электролиз?

Чтобы ответить на данный вопрос, следует сначала обратиться к терминологии и уяснить некоторые основные физико-химические понятия.

  1. Постоянный ток - это направленный поток электронов, исходящий от любого источника электричества.
  2. Электролит - вещество, раствор которого способен проводить электрический ток.
  3. Электроды - пластинки из определенных материалов, соединенные между собой, которые пропускают электричество через себя (анод и катод).
  4. Окислительно-восстановительная реакция - это процесс, при котором происходит изменение степеней окисления участников. То есть одни ионы окисляются и повышают значение степени окисления, другие, напротив, восстанавливаются, понижая ее.

Уяснив все эти термины, можно ответить на вопрос о том, что такое электролиз. Это окислительно-восстановительный процесс, заключающийся в пропускании постоянного тока через раствор электролита и завершающийся выделением разных продуктов на электродах.

Простейшая установка, которую можно назвать электролизером, включает в себя всего несколько компонентов:

  • два стакана с электролитом;
  • источник тока;
  • два электрода, соединенных между собой.

В промышленности использует гораздо более сложные автоматизированные конструкции, позволяющие получать большие массы продуктов - электролизные ванны.

Процесс электролиза достаточно сложный, подчиняется нескольким теоретическим законам и протекает по установленным порядкам и правилам. Чтобы правильно предсказать его исход, необходимо четко усвоить все закономерности и возможные варианты прохождения.

электролиз водного раствора

Теоретические основы процесса

Самые главные основополагающие каноны, на которых держится электролиз, - законы Майкла Фарадея - знаменитого ученого-физика, известного своими работами в области изучения электрического тока и всех сопровождающих его процессов.

Всего таких правил два, каждое из которых описывает суть происходящих при электролизе процессов.

Видео по теме

Первый закон

Первый закон Фарадея, формула которого записывается как m=kI*Δt, звучит следующим образом.

Масса вещества, выделяющегося на электроде, прямо пропорциональна тому электричеству, которое прошло через электролит.

Из формулы видно, что m - это масса вещества, I - сила тока, Δt - время, в течение которого он пропускался. Также имеется значение k, которое называется электрохимическим эквивалентом соединения. Эта величина зависит от природы самого соединения. Численно k равно массе вещества, которое выделяется на электроде при пропускании через электролит одной единицы электрического заряда.

катод это

Второе правило электролиза

Второй закон Фарадея, формула которого - m=M*I*Δt/n*F, звучит следующим образом. Электрохимический эквивалент соединения (k) прямо пропорционален его молярной массе и обратно пропорционален валентности вещества.

Приведенная формула является результатом вывода из всех объединенных. Она отражает суть второго закона электролиза. М - молярная масса соединения, I - сила тока, пропущенного за весь процесс, Δt - время всего электролиза, F - постоянная Фарадея, n - электроны, которые участвовали в процессе. Их число равно заряду иона, принимавшего участие в процессе.

Законы Фарадея помогают понять, что такое электролиз, а также рассчитать возможный выход продукта по массе, спрогнозировать необходимый результат и повлиять на ход процесса. Они и составляют теоретическую основу рассматриваемых преобразований.

закон фарадея формула

Понятие об аноде и его типы

Очень важное значение в электролизе имеют электроды. Весь процесс зависит от материала, из которого они изготовлены, от их специфических свойств и характера. Поэтому рассмотрим более подробно каждый из них.

Анод - плюс, или положительный электрод. То есть такой, который присоединяется к "+" полюсу источника питания. Соответственно, к нему из раствора электролита будут двигаться отрицательные ионы или анионы. Они будут окисляться здесь, приобретая более высокую степень окисления.

Поэтому можно изобразить небольшую схему, которая поможет запомнить анодные процессы: анод "плюс" - анионы - окисление. При этом существует два основных типа данного электрода, в зависимости от которых, будет получаться тот или иной продукт.

  1. Нерастворимый, или инертный анод. К такому типу относят электрод, который служит лишь для передачи электронов и процессов окисления, однако сам он при этом не расходуется и не растворяется. Таковыми анодами являются изготовленные из графита, иридия, платины, угля и так далее. Используя такие электроды, можно получать металлы в чистом виде, газы (кислород, водород, хлор и так далее).
  2. Растворимый анод. При окислительных процессах он сам растворяется и влияет на исход всего электролиза. Основные материалы, из которых изготавливаются подобного типа электроды: никель, медь, кадмий, свинец, олово, цинк и прочие. Использование таких анодов необходимо для процессов электрорафинирования металлов, гальванопластике, нанесения защитных покрытий от коррозии и так далее.

Суть всех происходящих процессов на положительном электроде сводится к тому, чтобы разрядились наиболее электроотрицательные по значению потенциала ионы. ИВот почему это делают анионы бескислородных кислот и гидроксид-ион, а потом вода, если речь идет о растворе. Кислородсодержащие анионы в водном растворе электролита вообще на аноде не разряжаются, так как вода делает это быстрее, высвобождая кислород.

анод плюс

Катод и его характеристика

Катод - это отрицательно заряженный электрод (за счет скопления на нем электронов при пропускании электрического тока). Именно поэтому к нему движутся положительно заряженные ионы - катионы, которые претерпевают восстановление, то есть понижают степень окисления.

Здесь для запоминания также уместна схема: катод "минус" - катион - восстановление. В качестве материала для катода могут служить:

  • нержавейка;
  • медь;
  • углерод;
  • латунь;
  • железо;
  • алюминий и прочие.

Именно на этом электроде происходит восстановление металлов до чистых веществ, что является одним из основных способов получения их в промышленности. Также возможен переход электронов от анода к катоду, а если первый - растворимый, то его ионы восстанавливаются на отрицательном электроде. Здесь же происходит восстановление катионов водорода до газа Н2. Поэтому катод - это одна из самых важных частей в общей схеме процесса электролиза веществ.

электролиз меди

Электролиз расплавов

С точки зрения химии рассматриваемый процесс имеет свое уравнение. При помощи него можно изобразить всю схему на бумаге и предугадать результат. Самое главное, на что следует обращать внимание, - наличие или отсутствие водной среды и тип анода (растворимый или нет).

Если необходимо получение следующих продуктов: щелочных и щелочноземельных металлов, щелочей, алюминия, бериллия, газы из кислородсодержащих анионов, тогда не может идти речь об электролизе раствора электролита. Только расплав, потому что иначе требуемых соединений не получится. Именно поэтому часто в промышленности синтезируют перечисленные вещества, используя их безводные сухие соли и гидроксиды.

В целом уравнение электролиза расплава выглядит достаточно просто и стандартно. Например, если рассмотреть и записать его для йодида калия, то вид будет следующий:

KI = K+ + I-

Катод (К) "-": К+ + 1е = К0

Анод (А) "+": 2I- - 2e = I20

Итог процесса: KI = K + I2.

Точно так же будет записываться электролиз любого металла, независимо от значения его электродного потенциала.

Электролиз водного раствора

Если речь идет о растворах электролитов, то исход процесса будет совсем другой. Ведь вода становится активным участником. Она способна также диссоциировать на ионы и разряжаться у электродов. Поэтому в подобных случаях важное значение имеет электродный потенциал ионов. Чем его отрицательное значение ниже, тем больше вероятность более быстрого окисления или восстановления.

Электролиз водного раствора подчиняется нескольким правилам, которые следует запомнить.

  1. Анодные процессы: разряжаются только анионы бескислородных кислот (кроме фтороводородной). Если ион кислородсодержащий или фторид-ион, то окисляться будет вода с высвобождением кислорода.
  2. Катодные процессы: металлы в электрохимическом ряду напряжений (до алюминия включительно) на катоде не восстанавливаются вследствие высокой химической активности. Это делает вода с высвобождением водорода. Металлы от алюминия до водорода восстанавливаются одновременно с водой до простых веществ. Те же, что стоят после водорода в ряду напряжений (малоактивные), легко подвергаются восстановлению до простых веществ.

Если следовать этим правилам, то можно изобразить любой электролиз и просчитать выход продукта. В случае с растворимым анодом схема меняется и становится гораздо более сложной.

процесс электролиза

Электролиз солей

Данные процессы используют для получения чистых металлов и газов, так как это технологически просто и экономически выгодно. К тому же продукты выходят с большой долей чистоты, что немаловажно.

Например, электролиз меди позволяет быстро получать ее в чистом виде из раствора любой соли. Чаще всего используется медный купорос или сульфат меди (II) - CuSO4.

Как из расплава, так и из раствора данной соли можно извлечь чистый металл, который так необходим практически во всех отраслях электротехники и металлостроительстве.

Значение и применение процесса

Электролиз - очень важный процесс. На его основе базируются такие необходимые технические операции, как:

  1. Рафинирование металлов.
  2. Электроэкстракция.
  3. Гальванотехника.
  4. Электросинтез.
  5. Нанесение антикоррозионных покрытий и другие.
Источник: fb.ru

Комментарии

Идёт загрузка...

Похожие материалы

Что такое никотин? Физические и химические свойства. Никотин в сигаретах, влияние никотина на организмЗдоровье Что такое никотин? Физические и химические свойства. Никотин в сигаретах, влияние никотина на организм

Курение сигарет - пагубная и одна из самых тяжелых зависимостей. О том, что такое никотин и каково его влияние на организм, знает даже школьник. Это вещество, которое идет рука об руку с табаком, то, что вызывает зави...

Анод и катод - что это и как правильно определить?Образование Анод и катод - что это и как правильно определить?

Про анод и катод источника питания необходимо знать тем, кто занимается практической электроникой. Что и как называют? Почему именно так? Будет углублённое рассмотрение темы с точки зрения не только радиолюбительства,...

Что такое невесомость с точки зрения физика и космонавта?Образование Что такое невесомость с точки зрения физика и космонавта?

Что такое невесомость? Парящие чашки, возможность летать и ходить по потолку, с легкостью перемещать даже самые массивные предметы — таково романтическое представление об этом физическом понятии.

Что такое ТС: классификация и правила регистрацииАвтомобили Что такое ТС: классификация и правила регистрации

Что такое ТС? Давайте разберемся! Аббревиатура ТС может иметь несколько вариантов рас...

Что такое ШРУС внутренний и как произвести его замену?Автомобили Что такое ШРУС внутренний и как произвести его замену?

ШРУС – это аббревиатура «шарнир равных угловых скоростей». По сути данная деталь является составной частью приводного вала автомобиля. С одной стороны данный шарнир вставляется в подшипник ступицы, с...

Что такое CAN-шина, и для чего она нужна?Автомобили Что такое CAN-шина, и для чего она нужна?

На данный момент практически каждый современный автомобиль укомплектовывается бортовыми компьютерами, системами АБС, EBD, электростеклоподъемниками и многими другими электронными приборами. Сейчас такая техника может ...

Что такое маслосъемные колпачки и как они устроеныАвтомобили Что такое маслосъемные колпачки и как они устроены

Безусловно, смазка необходима для нормальной работы двигателя и его комплектующих. Что интересно, попадание масла в саму камеру сгорания может привести к капитальному ремонту всего ДВС. А вот его присутствие на стенка...

Что такое лифт «Нивы» и как его сделать своими руками?Автомобили Что такое лифт «Нивы» и как его сделать своими руками?

Несмотря на то, что внедорожник «Нива» имеет полный привод и высокий дорожный просвет, преодолеть полное бездорожье ему вряд ли удастся. Все же это не вездеход и не танк, а гражданский автомобиль. Одн...

Что такое щетки генератора, и для чего они нужны? Автомобили Что такое щетки генератора, и для чего они нужны?

Щетки генератора – это неотъемлемая часть системы подвода и отвода электрического тока. Несмотря на свои маленькие размеры, они имеют огромную значимость для машины. Ведь если щетки не будут функционировать - ге...

Что такое автокресло-бустер, и в чем его особенности?Автомобили Что такое автокресло-бустер, и в чем его особенности?

Приобретение детского автомобильного кресла – это всегда долгое и мучительное мероприятие, которое заметно отражается на семейном бюджете. Однако сэкономить на этом, не нанося ущерб безопасности, вполне возможно...

monateka.com