Производная функции: основные понятия и определения. Как найти производную в точке


Найти производную: алгоритм и примеры решений

Операция отыскания производной называется дифференцированием.

В результате решения задач об отыскании производных у самых простых (и не очень простых) функций по определению производной как предела отношения приращения к приращению аргумента появились таблица производных и точно определённые правила дифференцирования. Первыми на ниве нахождения производных потрудились Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716).

Поэтому в наше время, чтобы найти производную любой функции, не надо вычислять упомянутый выше предел отношения приращения функции к приращению аргумента, а нужно лишь воспользоваться таблицей производных и правилами дифференцирования. Для нахождения производной подходит следующий алгоритм.

Чтобы найти производную, надо выражение под знаком штриха разобрать на составляющие простые функции и определить, какими действиями (произведение, сумма, частное) связаны эти функции. Далее производные элементарных функций находим в таблице производных, а формулы производных произведения, суммы и частного - в правилах дифференцирования. Таблица производных и правила дифференцирования даны после первых двух примеров.

Пример 1. Найти производную функции

.

Решение. Из правил дифференцирования выясняем, что производная суммы функций есть сумма производных функций, т. е.

.

Из таблицы производных выясняем, что производная "икса" равна единице, а производная синуса - косинусу. Подставляем эти значения в сумму производных и находим требуемую условием задачи производную:

.

Пример 2. Найти производную функции

.

Решение. Дифференцируем как производную суммы, в которой второе слагаемое с постоянным множителем, его можно вынести за знак производной:

Если пока возникают вопросы, откуда что берётся, они, как правило, проясняются после ознакомления с таблицей производных и простейшими правилами дифференцирования. К ним мы и переходим прямо сейчас.

Правило 1. Если функции

дифференцируемы в некоторой точке , то в той же точке дифференцируемы и функции

причём

                          

т.е. производная алгебраической суммы функций равна алгебраической сумме производных этих функций.

Следствие. Если две дифференцируемые функции отличаются на постоянное слагаемое, то их производные равны, т.е.

                              

Правило 2. Если функции

и

дифференцируемы в некоторой точке , то в то же точке дифференцируемо и их произведение

причём

                     

т.е. производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой. 

Следствие 1. Постоянный множитель можно выносить за знак производной:

                          

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные.

Например, для трёх множителей:

                     

Правило 3. Если функции

и

дифференцируемы в некоторой точке и , то в этой точке дифференцируемо и их частное u/v , причём

                  

т.е. производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя.

Где что искать на других страницах

При нахождении производной произведения и частного в реальных задачах всегда требуется применять сразу несколько правил дифференцирования, поэтому больше примеров на эти производные - в статье "Производная произведения и частного функций".

Здесь же (далее) - более простые примеры на производную произведения и частного, на которых Вы увереннее освоите алгоритмы вычислений.

Замечание. Следует не путать константу (то есть, число) как слагаемое в сумме и как постоянный множитель! В случае слагаемого её производная равна нулю, а в случае постоянного множителя она выносится за знак производных. Это типичная ошибка, которая встречается на начальном этапе изучения производных, но по мере решения уже нескольких одно- двухсоставных примеров средний студент этой ошибки уже не делает.

А если при дифференцировании произведения или частного у вас появилось слагаемое u'v, в котором u - число, например, 2 или 5, то есть константа, то производная этого числа будет равна нулю и, следовательно, всё слагаемое будет равно нулю (такой случай разобран в примере 10).

Другая частая ошибка - механическое решение производной сложной функции как производной простой функции. Поэтому производной сложной функции посвящена отдельная статья. Но сначала будем учиться находить производные простых функций.

По ходу не обойтись без преобразований выражений. Для этого может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями.

Если Вы ищете решения производных дробей со степенями и корнями, то есть, когда функция имеет вид вроде , то следуйте на занятие "Производная суммы дробей со степенями и корнями".

Если же перед Вами задача вроде , то Вам на занятие "Производные простых тригонометрических функций".

Получить в PDF методичку-решебник с 33 примерами решений Найти производную: алгоритм на примере простых элементарных функций, БЕСПЛАТНО

Пример 3. Найти производную функции

.

Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители - суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило дифференцирования произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой:

Далее применяем правило дифференцирования суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций. В нашем случае в каждой сумме второе слагаемое со знаком минус. В каждой сумме видим и независимую переменную, производная которой равна единице, и константу (число), производная которой равна нулю. Итак, "икс" у нас превращается в единицу, а минус 5 - в ноль. Во втором выражении "икс" умножен на 2, так что двойку умножаем на ту же единицу как производную "икса". Получаем следующие значения производных:

Подставляем найденные производные в сумму произведений и получаем требуемую условием задачи производную всей функции:

Пример 4. Найти производную функции

Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:

Производную сомножителей в числителе мы уже нашли в примере 2. Не забудем также, что произведение, являющееся вторым сомножителем в числителе в текущем примере берётся со знаком минус:

Если Вы ищете решения таких задач, в которых надо найти производную функции, где сплошное нагромождение корней и степеней, как, например, , то добро пожаловать на занятие "Производная суммы дробей со степенями и корнями".

Если же Вам нужно узнать больше о производных синусов, косинусов, тангенсов и других тригонометрических функций, то есть, когда функция имеет вид вроде , то Вам на урок "Производные простых тригонометрических функций".

Получить в PDF методичку-решебник с 33 примерами решений Найти производную: алгоритм на примере простых элементарных функций, БЕСПЛАТНО

Пример 5. Найти производную функции

Решение. В данной функции видим произведение, один из сомножителей которых - квадратный корень из независимой переменной, с производной которого мы ознакомились в таблице производных. По правилу дифференцирования произведения и табличному значению производной квадратного корня получаем:

Пример 6. Найти производную функции

Решение. В данной функции видим частное, делимое которого - квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на :

Пример 9. Найти производную функции

.

Решение. Применяя правила вычисления производной алгебраической суммы функций, вынесения постоянного множителя за знак производной и формулу производной степени (в таблице производных - под номером 3), получим

.

Пример 10. Найти производную функции

Решение. Применим правило дифференцирования произведения, а затем найдём производные сомножителей, так же, как в предыдущей задаче, пользуясь формулой 3 из таблицы производных. Тогда получим

Пример 11. Найти производную функции

Решение. Как и в примерах 4 и 6, применим правило дифференцирования частного:

Теперь вычислим производные в числителе и перед нами уже требуемый результат:

Пример 12.Найти производную функции

Шаг1. Применяем правило дифференцирования суммы:

Шаг2. Найдём производную первого слагаемого. Это табличная производная квадратного корня (в таблице производных - номер 5):

Шаг3. В частном знаменатель - также корень, только не квадратный. Поэтому преобразуем этот корень в степень:

и далее дифференцируем частное, не забывая, что число 2 в первом слагаемом числителя - это константа, производная которой равна нулю, и, следовательно всё первое слагаемое равно нулю:

Корень из константы, как не трудно догадаться, является также константой, а производная константы, как мы знаем из таблицы производных, равна нулю:

,

а производная, требуемая в условии задачи:

Получить в PDF методичку-решебник с 33 примерами решений Найти производную: алгоритм на примере простых элементарных функций, БЕСПЛАТНО

Напоминаем, что чуть более сложные примеры на производную произведения и частного - в статьях "Производная произведения и частного функций" и "Производная суммы дробей со степенями и корнями".

Также настоятельно рекомендуем изучить производную сложной функции.

Поделиться с друзьями

Весь блок "Производная"

function-x.ru

Найти значение производной функции в точке х0

Производная функции в точке

Как найти производную функции в точке? Из формулировки следуют два очевидных пункта этого задания:

1) Необходимо найти производную.

2) Необходимо вычислить значение производной в заданной точке.

Пример 1

Вычислить производную функции 

 в точке 

Справка: Следующие способы обозначения функции эквивалентны:

В некоторых заданиях бывает удобно обозначить функцию «игреком», а в некоторых через «эф от икс».

Сначала находим производную:

Надеюсь, многие уже приноровились находить такие производные устно.

На втором шаге вычислим значение производной в точке 

:

Готово.

Небольшой разминочный пример для самостоятельного решения:

Пример 2

Вычислить производную функции 

 в точке 

Полное решение и ответ в конце урока.

Необходимость находить производную в точке возникает в следующих задачах: построение касательной к графику функции (следующий параграф), исследование функции на экстремум, исследование функции на перегиб графика, полное исследование функции и др.

Но рассматриваемое задание встречается в контрольных работах и само по себе. И, как правило, в таких случаях функцию дают достаточно сложную. В этой связи рассмотрим еще два примера.

Пример 3

Вычислить производную функции 

 в точке . Сначала найдем производную:

Производная, в принципе, найдена, и можно подставлять требуемое значение 

. Но что-то делать это не сильно хочется. Выражение очень длинное, да и значение «икс» у нас дробное. Поэтому стараемся максимально упростить нашу производную. В данном случае попробуем привести к общему знаменателю три последних слагаемых:

Ну вот, совсем другое дело. Вычислим значение производной в точке 

:

В том случае, если Вам не понятно, как найдена производная, вернитесь к первым двум урокам темы. Если возникли трудности (недопонимание) с арктангенсом и его значениями, обязательно изучите методический материал Графики и свойства элементарных функций – самый последний параграф. Потому-что арктангенсов на студенческий век ещё хватит.

Пример 4

Вычислить производную функции 

 в точке .

Это пример для самостоятельного решения.

Уравнение касательной к графику функции

Чтобы закрепить предыдущий параграф, рассмотрим задачу нахождения касательной кграфику функции в данной точке. Это задание встречалось нам в школе, и оно же встречается в курсе высшей математики.

Рассмотрим «демонстрационный» простейший пример.

Составить уравнение касательной к графику функции 

 в точке с абсциссой . Я сразу приведу готовое графическое решение задачи (на практике этого делать в большинстве случаев не надо):

Строгое определение касательной даётся с помощью определения производной функции, но пока мы освоим техническую часть вопроса. Наверняка практически всем интуитивно понятно, что такое касательная. Если объяснять «на пальцах», то касательная к графику функции – это прямая, которая касается графика функции в единственнойточке. При этом все близлежащие точки прямой расположены максимально близко к графику функции.

Применительно к нашему случаю: при 

 касательная  (стандартное обозначение) касается графика функции в единственной точке .

И наша задача состоит в том, чтобы найти уравнение прямой 

.

StudFiles.ru>

Производная функции в точке

Как найти производную функции в точке? Из формулировки следуют два очевидных пункта этого задания:

1) Необходимо найти производную.

2) Необходимо вычислить значение производной в заданной точке.

Пример 1

Вычислить производную функции

в точке

Справка: Следующие способы обозначения функции эквивалентны: В некоторых заданиях бывает удобно обозначить функцию «игреком», а в некоторых через «эф от икс».

Сначала находим производную:

Надеюсь, многие уже приноровились находить такие производные устно.

На втором шаге вычислим значение производной в точке

:

Готово.

Небольшой разминочный пример для самостоятельного решения:

Пример 2

Вычислить производную функции

в точке

Полное решение и ответ в конце урока.

Необходимость находить производную в точке возникает в следующих задачах: построение касательной к графику функции (следующий параграф), исследование функции на экстремум, исследование функции на перегиб графика, полное исследование функции и др.

Но рассматриваемое задание встречается в контрольных работах и само по себе. И, как правило, в таких случаях функцию дают достаточно сложную. В этой связи рассмотрим еще два примера.

Пример 3

Вычислить производную функции

в точке . Сначала найдем производную:

Производная, в принципе, найдена, и можно подставлять требуемое значение

. Но что-то делать это не сильно хочется. Выражение очень длинное, да и значение «икс» у нас дробное. Поэтому стараемся максимально упростить нашу производную. В данном случае попробуем привести к общему знаменателю три последних слагаемых:

Ну вот, совсем другое дело. Вычислим значение производной в точке

:

В том случае, если Вам не понятно, как найдена производная, вернитесь к первым двум урокам темы. Если возникли трудности (недопонимание) с арктангенсом и его значениями, обязательно изучите методический материал Графики и свойства элементарных функций – самый последний параграф. Потому-что арктангенсов на студенческий век ещё хватит.

Пример 4

Вычислить производную функции

в точке .

Это пример для самостоятельного решения.

studopedia.ru>

Как найти значение производной функции F(x) в точке Хо? Как вообще это решать?

Sfash

Если формула задана, то найти производную и вместо Х подставить Х-нулевое. Посчитать Если речь идет о б-8 ЕГЭ, график, то надо найти тангенс угла (острый или тупой) , который образует касательная с осью Х (с помощью мысленного построения прямоугольного треугольника и определения тангенса угла)

Тимур адильходжаев

Во-первых, надо определиться со знаком. Если точка х0 находится в нижней части координатной плоскости, то знак в ответе будет минус, а если выше, то +. Во-вторых, надо знать что такое тангес в прямоугольном прямоугольнике. А это соотношение противолежащей стороны (катета) к прилежащей стороне (тоже катета) . На картине обычно есть несколько черных отметок. Из эти отметок составляешь прямоугольный треугольник и находишь тангес.

Как найти значение производной функции f x в точке x0?

нет конкретно поставленного вопроса — 3 года назад

Bk.Ru

В общем случае, что бы найти значение производной какой-либо функции по некоторой переменной в какой-либо точке, нужно продифференцировать заданную функцию по этой переменной. В вашем случае по переменной Х. В полученное выражение вместо Х поставить значение икса в той точке, для которой надо найти значение производной, т.е. в Вашем случае подставить нулевой Х и вычислить полученное выражение.

Ну а ваше стремление разобраться в этом вопросе, на мой взгляд, бесспорно заслуживает +, который ставлю с чистой совестью.

Lady v

Такая постановка задачи на нахождение производной часто ставится для закрепления материала на геометрический смысл производной. Предлагается график некоей функции, совершенно произвольной и не заданной уравнением и требуется найти значение производной (не саму производную заметьте!) в указанной точке Х0. Для этого строится касательная к заданной функции и находится точки ее пересечения с осями координат. Потом составляется уравнение этой касательной в виде y=кx+b.

В этом уравнении коэффициент к и будет являться значением производной. остается лишь найти значение коэффициента b. Для этого находим значение у при х=о, пусть оно равно 3 - это и есть значение коэффициента b. Подставляем в исходное уравнение значения Х0 и У0 и находим к - нашу значение производной в этой точке.

bolshoyvopros.ru>

Читайте также

zna4enie.ru

Как найти производную функции, примеры решения

Процесс нахождения производной функции называется дифференцированием. Производную приходится находить в ряде задач курса математического анализа. Например, при отыскании точек экстремума и перегиба графика функции.

Как найти?

Чтобы найти производную функции нужно знать таблицу производных элементарных функций и применять основные правила дифференцирования:

  1. Вынос константы за знак производной:
  2. Производная суммы/разности функций:
  3. Производная произведения двух функций:
  4. Производная дроби:
  5. Производная сложной функции:

Примеры решения

Пример 1
Найти производную функции
Решение

Производная суммы/разности функций равна сумме/разности производных:

Используя правило производной степенной функции имеем:

Так же было учтено, что производная от константы равна нулю.

Ответ
Пример 2
Найти производную функции
Решение

По правилу производной разности:

По таблице интегрирования находим:

С учетом того, что аргумент натурального логарифма отличен от , то нужно домножить ещё на производную самого аргумента:

После упрощения получаем:

Ответ
Пример 3
Найти производную функции
Решение

В данном примере стоит произведение двух функций, а производная произведения находится по формуле номер 3:

Производная первой функции вычисляется как разность фунций:

Вторая функция является показательной, производная которой находится по формуле: :

Продолжаем решение с учетом найденных производных:

Ответ
Пример 4
Найти производную функции
Решение

Производную дроби найдем по четвертой формуле. Положим и . Тогда их производные по таблице основных элементарных функций равны:

Используя формулу №4 получаем:

Выносим множитель в числителе за скобку:

Ответ
Пример 5
Найти производную функции
Решение

Данная функция является сложной, потому производную будем брать по цепочке. Сначала от внешней функции, затем от внутренней. При этом выполняя их перемножение.

Заметим, что аргумент синуса отличен от , поэтому тоже является сложной функцией:

Учитывая определение котангенса перепишем полученную производную в удобном компактном виде:

Ответ

xn--24-6kcaa2awqnc8dd.xn--p1ai

Задача 7 — геометрический смысл производной

15 марта 2011

В задаче B9 дается график функции или производной, по которому требуется определить одну из следующих величин:

  1. Значение производной в некоторой точке x0,
  2. Точки максимума или минимума (точки экстремума),
  3. Интервалы возрастания и убывания функции (интервалы монотонности).

Функции и производные, представленные в этой задаче, всегда непрерывны, что значительно упрощает решение. Не смотря на то, что задача относится к разделу математического анализа, она вполне по силам даже самым слабым ученикам, поскольку никаких глубоких теоретических познаний здесь не требуется.

Для нахождения значения производной, точек экстремума и интервалов монотонности существуют простые и универсальные алгоритмы — все они будут рассмотрены ниже.

Внимательно читайте условие задачи B9, чтобы не допускать глупых ошибок: иногда попадаются довольно объемные тексты, но важных условий, которые влияют на ход решения, там немного.

Вычисление значения производной. Метод двух точек

Если в задаче дан график функции f(x), касательная к этому графику в некоторой точке x0, и требуется найти значение производной в этой точке, применяется следующий алгоритм:

  1. Найти на графике касательной две «адекватные» точки: их координаты должны быть целочисленными. Обозначим эти точки A (x1; y1) и B (x2; y2). Правильно выписывайте координаты — это ключевой момент решения, и любая ошибка здесь приводит к неправильному ответу.
  2. Зная координаты, легко вычислить приращение аргумента Δx = x2 − x1 и приращение функции Δy = y2 − y1.
  3. Наконец, находим значение производной D = Δy/Δx. Иными словами, надо разделить приращение функции на приращение аргумента — и это будет ответ.

Еще раз отметим: точки A и B надо искать именно на касательной, а не на графике функции f(x), как это часто случается. Касательная обязательно будет содержать хотя бы две таких точки — иначе задача составлена некорректно.

Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

Нахождение производной по графику касательной - функция возрастает

Рассмотрим точки A (−3; 2) и B (−1; 6) и найдем приращения: Δx = x2 − x1 = −1 − (−3) = 2; Δy = y2 − y1 = 6 − 2 = 4.

Найдем значение производной: D = Δy/Δx = 4/2 = 2.

Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

Нахождение производной по графику касательной - функция убывает

Рассмотрим точки A (0; 3) и B (3; 0), найдем приращения: Δx = x2 − x1 = 3 − 0 = 3; Δy = y2 − y1 = 0 − 3 = −3.

Теперь находим значение производной: D = Δy/Δx = −3/3 = −1.

Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

Нахождение производной по графику касательной в точках экстремума

Рассмотрим точки A (0; 2) и B (5; 2) и найдем приращения: Δx = x2 − x1 = 5 − 0 = 5; Δy = y2 − y1 = 2 − 2 = 0.

Осталось найти значение производной: D = Δy/Δx = 0/5 = 0.

Из последнего примера можно сформулировать правило: если касательная параллельна оси OX, производная функции в точке касания равна нулю. В этом случае даже не надо ничего считать — достаточно взглянуть на график.

Вычисление точек максимума и минимума

Иногда вместо графика функции в задаче B9 дается график производной и требуется найти точку максимума или минимума функции. При таком раскладе метод двух точек бесполезен, но существует другой, еще более простой алгоритм. Для начала определимся с терминологией:

  1. Точка x0 называется точкой максимума функции f(x), если в некоторой окрестности этой точки выполняется неравенство: f(x0) ≥ f(x).
  2. Точка x0 называется точкой минимума функции f(x), если в некоторой окрестности этой точки выполняется неравенство: f(x0) ≤ f(x).

Для того чтобы найти точки максимума и минимума по графику производной, достаточно выполнить следующие шаги:

  1. Перечертить график производной, убрав всю лишнюю информацию. Как показывает практика, лишние данные только мешают решению. Поэтому отмечаем на координатной оси нули производной — и все.
  2. Выяснить знаки производной на промежутках между нулями. Если для некоторой точки x0 известно, что f’(x0) ≠ 0, то возможны лишь два варианта: f’(x0) ≥ 0 или f’(x0) ≤ 0. Знак производной легко определить по исходному чертежу: если график производной лежит выше оси OX, значит f’(x) ≥ 0. И наоборот, если график производной проходит под осью OX, то f’(x) ≤ 0.
  3. Снова проверяем нули и знаки производной. Там, где знак меняется с минуса на плюс, находится точка минимума. И наоборот, если знак производной меняется с плюса на минус, это точка максимума. Отсчет всегда ведется слева направо.

Эта схема работает только для непрерывных функций — других в задаче B9 не встречается.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−5; 5]. Найдите точку минимума функции f(x) на этом отрезке.

Нахождение точки минимума по графику производной

Избавимся от лишней информации — оставим только границы [−5; 5] и нули производной x = −3 и x = 2,5. Также отметим знаки:

Нахождение точки минимума по графику производной - без лишней информации

Очевидно, в точке x = −3 знак производной меняется с минуса на плюс. Это и есть точка минимума.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−3; 7]. Найдите точку максимума функции f(x) на этом отрезке.

Нахождение точки максимума по графику производной

Перечертим график, оставив на координатной оси только границы [−3; 7] и нули производной x = −1,7 и x = 5. Отметим на полученном графике знаки производной. Имеем:

Нахождение точки максимума по графику производной - без лишней информации

Очевидно, в точке x = 5 знак производной меняется с плюса на минус — это точка максимума.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−6; 4]. Найдите количество точек максимума функции f(x), принадлежащих отрезку [−4; 3].

Подсчет точек максимума на графике производной

Из условия задачи следует, что достаточно рассмотреть только часть графика, ограниченную отрезком [−4; 3]. Поэтому строим новый график, на котором отмечаем только границы [−4; 3] и нули производной внутри него. А именно, точки x = −3,5 и x = 2. Получаем:

Подсчет точек максимума на графике производной - без лишней информации

На этом графике есть лишь одна точка максимума x = 2. Именно в ней знак производной меняется с плюса на минус.

Небольшое замечание по поводу точек с нецелочисленными координатами. Например, в последней задаче была рассмотрена точка x = −3,5, но с тем же успехом можно взять x = −3,4. Если задача составлена корректно, такие изменения не должны влиять на ответ, поскольку точки «без определенного места жительства» не принимают непосредственного участия в решении задачи. Разумеется, с целочисленными точками такой фокус не пройдет.

Нахождение интервалов возрастания и убывания функции

В такой задаче, подобно точкам максимума и минимума, предлагается по графику производной отыскать области, в которых сама функция возрастает или убывает. Для начала определим, что такое возрастание и убывание:

  1. Функция f(x) называется возрастающей на отрезке [a; b] если для любых двух точек x1 и x2 из этого отрезка верно утверждение: x1 ≤ x2 ⇒ f(x1) ≤ f(x2). Другими словами, чем больше значение аргумента, тем больше значение функции.
  2. Функция f(x) называется убывающей на отрезке [a; b] если для любых двух точек x1 и x2 из этого отрезка верно утверждение: x1 ≤ x2 ⇒ f(x1) ≥ f(x2). Т.е. большему значению аргумента соответствует меньшее значение функции.

Сформулируем достаточные условия возрастания и убывания:

  1. Для того чтобы непрерывная функция f(x) возрастала на отрезке [a; b], достаточно, чтобы ее производная внутри отрезка была положительна, т.е. f’(x) ≥ 0.
  2. Для того чтобы непрерывная функция f(x) убывала на отрезке [a; b], достаточно, чтобы ее производная внутри отрезка была отрицательна, т.е. f’(x) ≤ 0.

Примем эти утверждения без доказательств. Таким образом, получаем схему для нахождения интервалов возрастания и убывания, которая во многом похожа на алгоритм вычисления точек экстремума:

  1. Убрать всю лишнюю информацию. На исходном графике производной нас интересуют в первую очередь нули функции, поэтому оставим только их.
  2. Отметить знаки производной на интервалах между нулями. Там, где f’(x) ≥ 0, функция возрастает, а где f’(x) ≤ 0 — убывает. Если в задаче установлены ограничения на переменную x, дополнительно отмечаем их на новом графике.
  3. Теперь, когда нам известно поведение функции и ограничения, остается вычислить требуемую в задаче величину.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−3; 7,5]. Найдите промежутки убывания функции f(x). В ответе укажите сумму целых чисел, входящих в эти промежутки.

Нахождение интервалов убывания функции

Как обычно, перечертим график и отметим границы [−3; 7,5], а также нули производной x = −1,5 и x = 5,3. Затем отметим знаки производной. Имеем:

Нахождение интервалов убывания функции - без лишней информации

Поскольку на интервале (− 1,5) производная отрицательна, это и есть интервал убывания функции. Осталось просуммировать все целые числа, которые находятся внутри этого интервала: −1 + 0 + 1 + 2 + 3 + 4 + 5 = 14.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−10; 4]. Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них.

Нахождение интервалов возрастания функции

Избавимся от лишней информации. Оставим только границы [−10; 4] и нули производной, которых в этот раз оказалось четыре: x = −8, x = −6, x = −3 и x = 2. Отметим знаки производной и получим следующую картинку:

Нахождение интервалов возрастания функции - без лишней информации

Нас интересуют промежутки возрастания функции, т.е. такие, где f’(x) ≥ 0. На графике таких промежутков два: (−8; −6) и (−3; 2). Вычислим их длины: l1 = − 6 − (−8) = 2; l2 = 2 − (−3) = 5.

Поскольку требуется найти длину наибольшего из интервалов, в ответ записываем значение l2 = 5.

Смотрите также:

  1. Задача 7: касательная к графику функции
  2. Задача 7: касательная к графику функции — 2
  3. Пробный ЕГЭ-2011 по математике, вариант №4
  4. Тест по теории вероятностей (1 вариант)
  5. Специфика работы с логарифмами в задаче B15
  6. Упрощаем решение задач с помощью замены переменной

www.berdov.com

в точке - Производные функций

Навигация по странице:
  • Как найти производную по определению Составить отношение
  • Ответ
  • Производная сложной функции иПростейшие задачи с производными
  • 1   2   3   4   5   6   7   8 в точке определяется формулой:Напоминаю обозначения и термины называют приращением аргумента – приращением функции – это ЕДИНЫЕ символы (дельту нельзя отрывать от икса или игрека. Очевидно, что является динамической переменной, – константой и результат вычисления предела – числом иногда – плюс либо минус бесконечностью).В качестве точки можно рассмотреть ЛЮБОЕ значение , принадлежащее области определения функции , в котором существует производная. ! Примечание оговорка в котором существует производная – в общем случае существенна Так, например, точка хоть и входит в область определения функции , но производной там не существует. Поэтому формула неприменима в точке и укороченная формулировка без оговорки будет некорректна. Аналогичные факты справедливы и для других функций с обрывами графика, в частности, для арксинуса и арккосинуса.Таким образом, после замены , получаем вторую рабочую формулу:Обратите внимание на коварное обстоятельство, которое может запутать чайника в данном пределе икс, будучи сам независимой переменной, исполняет роль статиста, а динамику задаёт опять же приращение . Результатом вычисления предела является производная функция Исходя из вышесказанного, сформулируем условия двух типовых задач Найти производную в точке, используя определение производной Найти производную функцию, используя определение производной. Эта версия, по моим наблюдениям, встречается заметно чаще и ей будет уделено основное внимание.Принципиальное отличие заданий состоит в том, что в первом случае требуется найти число как вариант, бесконечность, а во втором – функцию. Кроме того, производной может и вовсе не существовать.Как найти производную по определению Составить отношение и вычислить предел Откуда появилась таблица производных и правила дифференцирования Благодаря единственному пределу. Кажется волшебством, нов действительности – ловкость руки никакого мошенничества. На уроке Что такое производная я начал рассматривать конкретные примеры, где с помощью определения нашёл производные линейной и квадратичной функции. В целях познавательной разминки продолжим тревожить таблицу производных, оттачивая алгоритм и технические приёмы решения:Пример Найти производную функции , пользуясь определением производной По сути, требуется доказать частный случай производной степенной функции, который обычно фигурирует в таблице Решение технически оформляется двумя способами. Начнём с первого, уже знакомого подхода лесенка начинается с дощечки, а производная функция – с производной в точке. Рассмотрим некоторую (конкретную) точку , принадлежащую области определения функции , в которой существует производная. Зададим в данной точке приращение разумеется, не выходящее за рамки о/о-я) и составим соответствующее приращение функции:Вычислим предел:Неопределённость 0:0 устраняется стандартным приёмом, рассмотренным ещё в первом веке до нашей эры. Домножим числитель и знаменательна сопряженное выражение Техника решения такого предела подробно рассмотрена на вводном уроке о пределах функций.Итак, Поскольку в качестве можно выбрать ЛЮБУЮ точку интервала

    , то, осуществив замену , получаем:Ответ: по определению производной Готово. В который раз порадуемся логарифмам:Пример Найти производную функции , пользуясь определением производнойРешение: рассмотрим другой подход к раскрутке той же задачи. Он точно такой же, но более рационален сточки зрения оформления. Идея состоит в том, чтобы вначале решения избавиться от подстрочного индекса и вместо буквы использовать букву Рассмотрим произвольную точку , принадлежащую области определения функции (интервалу ), и зададим в ней приращение . А вот здесь, кстати, как ив большинстве случаев, можно обойтись без всяких оговорок, поскольку логарифмическая функция дифференцируема в любой точке области определения.Тогда соответствующее приращение функции:Найдём производную:Простота оформления уравновешивается путаницей, которая может

    возникнуть у начинающих (да и не только. Ведьмы привыкли, что в пределе изменяется буква икс Но тут всё по-другому: – античная статуя, а – живой посетитель, бодро шагающий по коридору музея. То есть икс – это как бы константа».Устранение неопределённости закомментирую пошагово:(1) Используем свойство логарифма (2) В скобках почленно делим числитель на знаменатель) В знаменателе искусственно домножаем и делим на икс чтобы воспользоваться замечательным пределом , при этом в качестве бесконечно малой величины выступает Ответ по определению производной Или сокращённо: Предлагаю самостоятельно сконструировать ещё две табличные формулы:Пример Найти производную по определению В данном случае составленное приращение сразу же удобно привести к общему знаменателю. Примерный образец оформления задания в конце урока (первый способ).Пример Найти производную по определениюА тут всё необходимо свести к замечательному пределу Решение оформлено вторым способом.Аналогично выводится ряд других табличных производных. Полный список можно найти в школьном учебнике, или, например, 1- м томе Фихтенгольца. Не вижу особого смысла переписывать из книги доказательства правил дифференцирования – они тоже порождены формулой Переходим к реально встречающимся заданиям:Пример Найти производную функции , используя определение производнойРешение: используем первый стиль оформления. Рассмотрим некоторую точку , принадлежащую , изададим в ней приращение аргумента . Тогда соответствующее приращение функции:Возможно, некоторые читатели ещё не до конца поняли принцип, по которому нужно составлять приращение . Берём точку (число) и находим в ней значение функции , то есть в функцию вместо икса следует подставить . Теперь берём

    тоже вполне конкретное число итак же подставляем его в функцию вместо икса. Записываем разность, при этом необходимо полностью взять в скобки.Составленное приращение функции бывает выгодно сразу же упростить. Зачем Облегчить и укоротить решение дальнейшего предела. Используем формулы, раскрываем скобки и сокращаем всё, что можно сократить:Индейка выпотрошена, с жаркое никаких проблем:В итоге Поскольку в качестве можно выбрать любое действительное число,то проведём замену и получим Ответ по определению.В целях проверки найдём производную с помощью правил

    дифференцирования и таблицы:Всегда полезно и приятно знать правильный ответ заранее, поэтому лучше мысленно либо на черновике продифференцировать предложенную функцию быстрым способом в самом начале решения.Пример Найти производную функции по определению производнойЭто пример для самостоятельного решения. Результат лежит на поверхности:Вернёмся к стилю Пример Пользуясь определением, найти производную функцииДавайте немедленно узнаем, что должно получиться. По правилу дифференцирования сложной функции:Решение: рассмотрим произвольную точку , принадлежащую, зададим в ней приращение аргумента и составим приращение функции:Найдём производную

    (1) Используем тригонометрическую формулу) Под синусом раскрываем скобки, под косинусом приводим подобные слагаемые) Под синусом сокращаем слагаемые, под косинусом почленно делим числитель на знаменатель) В силу нечётности синуса выносим минус. Под косинусом указываем, что слагаемое (5) В знаменателе проводим искусственное домножение, чтобы использовать первый замечательный предел . Таким образом, неопределённость устранена, причёсываем результат.Ответ: по определениюКак видите, основная трудность рассматриваемой задачи упирается в

    сложность самого предела + небольшое своеобразие упаковки. На практике встречаются и тот и другой способ оформления, поэтому я максимально подробно расписываю оба подхода. Они равноценны, но всё-таки, по моему субъективному впечатлению, чайникам целесообразнее придерживаться го варианта с икс нулевым».Пример Пользуясь определением, найти производную функцииЭто задание для самостоятельного решения. Образец оформлен в том же духе, что предыдущий пример.Разберём более редкую версию задачи:Пример Найти производную функции в точке , пользуясь определением производной.Во-первых, что должно получиться в сухом остатке ЧислоВычислим ответ стандартным способом:Решение: сточки зрения наглядности это задание значительно проще,так как в формуле вместо

    рассматривается конкретное значение. Зададим в точке приращение и составим соответствующее приращение функции:Вычислим производную в точке:Используем весьма редкую формулу разности тангенсов ив который раз сведём решение к первому замечательному пределу:Ответ: по определению производной в точке.Задачу не так трудно решить ив общем виде – достаточно заменить на или просто в зависимости от способа оформления. В этом случае, понятно, получится не число, а производная функция.Пример Используя определение, найти производную функции в точке

    Это пример для самостоятельного решения.Заключительная бонус-задача предназначена, прежде всего, для студентов с углубленным изучением математического анализа, но и всем остальным тоже не помешает:Пример Будет ли дифференцируема функция вточке Решение очевидно, что кусочно-заданная функция непрерывна в точке , но будет ли она там дифференцируема Алгоритм решения, причём не только для кусочных функций, таков) Находим левостороннюю производную в данной точке 2) Находим правостороннюю производную в данной точке 3) Если односторонние производные конечны и совпадают, то функция дифференцируема в точке и геометрически здесь существует общая касательная (см. теоретическую часть урока Определение и смысл производной. Если получены два разных значения одно из которыхможет оказаться и бесконечным, то функция не дифференцируема в точке Если же обе односторонние производные равны бесконечности пусть даже разных знаков, то функция не дифференцируема в точке , нотам существует бесконечная производная и общая вертикальная касательная к графику см. Пример 5 урока Уравнение нормали

    ! Примечание таким образом, между вопросами Будет ли дифференцируема функция в точке и Существует ли производная в точке есть разница!Всё очень просто) При нахождении левосторонней производной приращение аргумента отрицательно , а слева от точки расположена парабола , поэтому приращение функции равно:И соответствующий левосторонний предел численно равен левосторонней производной в рассматриваемой точке) Справа от точки находится график прямой и приращение аргумента положительно . Таким образом, приращение функции:Правосторонний предел и правосторонняя производная в точке) Односторонние производные конечны и различны Ответ функция не дифференцируема в точке Ещё легче доказывается книжный случай недифференцируемости модуля в точке , о котором я в общих чертах уже рассказал на теоретическом уроке о производной.

    Некоторые кусочно-заданные функции дифференцируемы ив точках стыка графика, например, котопёс обладает общей производной и общей касательной (ось абсцисс) в точке . Кривой, да дифференцируемый на ! Желающие могут убедиться в этом самостоятельно по образцу только что решённого примера.На этом забавном гибриде и закончим повествование =) Решения и ответы:Пример 3: Решение рассмотрим некоторую точку , принадлежащую области определения функции . Зададим в данной точке приращение и составим соответствующее приращение функции:Найдём производную в точке Так как в качестве можно выбрать любую точку области определения функции , то и Ответ по определению производной

    Пример 4: Решение рассмотрим произвольную точку , принадлежащую , и зададим в ней приращение . Тогда соответствующее приращение функции:Найдём производную:Используем замечательный предел Ответ по определениюПример 6: Решение рассмотрим некоторую точку , принадлежащую , и зададим в ней приращение аргумента . Тогда соответствующее приращение функции:Вычислим производную:Таким образом Поскольку в качестве можно выбрать любое действительное число, то и

    Ответ по определению.Пример 8: Решение рассмотрим произвольную точку , принадлежащую , зададим в ней приращение и составим приращение функции:Найдём производную:Используем тригонометрическую формулу и первый замечательный предел:Ответ: по определениюПример 10: Решение Зададим приращение в точке . Тогда приращение функции:Вычислим производную в точке Умножим числитель и знаменательна сопряженное выражение:Ответ: по определению производной в точке Как найти уравнение нормали к графику функции в заданной точке?На данном уроке мы узнаем, как найти уравнение нормали к графику функции в точке и разберём многочисленные примеры, которые касаются этой задачи. Для качественного усвоения материала нужно понимать геометрический смысл производной и уметь их находить хотя бы на уровне следующих статей Как найти производную?Производная сложной функциииПростейшие задачи с производнымиПеречисленные уроки позволят чайникам быстро сориентироваться в теме и поднять свои навыки дифференцирования практически с полного нуля. По существу, сейчас последует развёрнутое продолжение параграфа об уравнении касательной й статьи из вышеприведенного списка. Почему продолжение Уравнение нормали тесно связано с уравнением касательной. Помимо прочего я рассмотрю задачи о том, как построить уравнения этих линий в ситуациях, когда функция задана неявнолибо параметрическиНо сначала освежим воспоминания если функция дифференцируема в точке (те. если существует конечная производная ), то уравнение касательной к графику функции в точке можно найти последующей формуле

    Это самый распространенный случай, с которым мы уже столкнулись на уроке Простейшие задачи с производными. Однако дело этим не ограничивается если в точке существует бесконечная производная, то касательная будет параллельна оси и её уравнение примет вид . Дежурный пример функция с производной , которая обращается в бесконечность вблизи критической точки. Соответствующая касательная выразится уравнением (ось ординат. Если же производной не существует например, производной отв точке ), то, разумеется, не существует и общей касательнойКак различать последние два случая, я расскажу чуть позже, а пока что вернёмся в основное русло сегодняшнего урока:Что такое нормаль Нормалью к графику функции в точке называется прямая, проходящая через данную точку перпендикулярно касательной к графику функции в этой точке понятно, что касательная должна существовать. Если совсем коротко, нормаль – это перпендикулярная к касательной прямая, проходящая через точку касания.Как найти уравнение нормали Из курса аналитической геометрии напрашивается очень простой алгоритм находим уравнение касательной и представляем его вобщем виде. Далее снимаем нормальный вектор и составляем уравнение нормали по точке и направляющему вектору .

    Этот способ применять можно, нов математическом анализе принято пользоваться готовой формулой, основанной на взаимосвязи угловых коэффициентов перпендикулярных прямых. Если существует конечная и отличная от нуля производная , то уравнение нормали к графику функции в точке выражается следующим уравнением:Особые случаи, когда равна нулю либо бесконечности мы обязательно рассмотрим, но сначала обычные примеры Пример Составить уравнения касательной и нормали к графику кривой в точке, абсцисса которой равна В практических заданиях часто требуется найти и касательную тоже. Впрочем, это очень только нА руку – лучше будет набита рука =) Решение Первая часть задания хорошо знакома, уравнение касательной составим по формуле:В данном случае:Найдём производную Здесь на первом шаге вынесли константу за знак производной, на втором – использовали правило дифференцирования сложной функцииТеперь вычислим производную в точке:Получено конечное число и это радует. Подставим ив формулу:Перебросим наверх левой части, раскроем скобки и представим уравнение касательной в общем виде:Вторая часть задания ничуть не сложнее. Уравнение нормали составим по формуле Избавляемся от трёхэтажности дроби и доводим уравнение до ума – искомое уравнение.Ответ: Здесь можно выполнить частичную проверку. Во-первых, координаты точки должны удовлетворять каждому уравнению – верное равенство – верное равенство.И, во-вторых, векторы нормали должны быть ортогональны. Это элементарно проверяется с помощью скалярного произведения, что и требовалось проверить.Как вариант, вместо нормальных векторов можно использовать направляющие векторы прямых ! Данная проверка оказывается бесполезной, если неверно найдена производная и/или производная в точке . Это слабое звено задания – будьте предельно внимательны!Чертежа по условию не требовалось, но полноты картины ради:Забавно, но фактически получилась и полная проверка, поскольку чертёж выполнен достаточно точно =) Кстати, функция задаёт верхнюю дугу эллипсаСледующая задача для самостоятельного решения:Пример Составить уравнения касательной и нормали к графику функции

    в точке Примерный образец чистового оформления задания в конце урока.Теперь разберём два особых случая) Если производная в точке равна нулю , то уравнение касательной упростится То есть, касательная будет параллельна оси Соответственно, нормаль будет проходить через точку параллельно оси , а значите уравнение примет вид 2) Если производная в точке существует, но бесконечна, то, как отмечалось в самом начале статьи, касательная станет вертикальной . И поскольку нормаль проходит через точку параллельно оси , то её уравнение выразится зеркальным образом Всё просто:Пример Составить уравнения касательной и нормали к параболе в точке . Сделать чертёж.Требование выполнить чертёж я не добавлял – так было сформулировано задание в оригинале. Хотя это редкость. Решение составим уравнение касательной

    В данном случае Казалось бы, расчёты пустяковые, а в знаках запутаться более чем реально:Таким образом:Поскольку касательная параллельна оси Случай №1), то нормаль, проходящая через туже точку , будет параллельна оси ординат:Чертёж – это, конечно же, дополнительные хлопоты, но зато добротная проверка аналитического решения Ответ , В школьном курсе математики распространено упрощённое определение касательной, которое формулируется примерно так Касательная к графику функции – это прямая, имеющая сданным графиком единственную общую точку. Как видите, в общем случае это утверждение некорректно. Согласно геометрическому смыслу производной, касательной является именно зелёная, а не синяя прямая.Следующий пример посвящён тому же Случаю №1, когда Пример Написать уравнение касательной и нормали к кривой в точке Краткое решение и ответ в конце урока

    Случай №2, в котором на практике встречается редко, поэтому начинающие могут особо не волноваться и с лёгким сердцем пропустить пятый пример. Информация, выделенная курсивом, предназначена для читателей с высоким уровнем подготовки, которые хорошо разобрались с определениями производной и касательной, а также имеют опыт нахождения производной по определению:Пример Найти уравнения касательной и нормали к графику функции в точке Решение в критической точке знаменатель производной обращается в ноль, и поэтому здесь нужно вычислить односторонние производные с помощью определения производной (см. конец статьи Производная по

    1   2   3   4   5   6   7   8

    topuch.ru

    Производная онлайн с подробным решением

    Калькулятор решает производные c описанием действий ПОДРОБНО бесплатно!

    Это он-лайн сервис в один шаг:

    • Ввести функцию, для которой надо найти производную

    Перейти: Онлайн сервис "Производная функции" →

    Это он-лайн сервис в один шаг:
    • Ввести функцию, для которой надо найти частные производные
    Перейти: Онлайн сервис "Частная производная функции" → Это он-лайн сервис в два шага:
    • Ввести функцию, для которой надо найти производную
    • Ввести найденную первую производную в форму
    Перейти: Онлайн сервис "Вторая производная функции" → Это он-лайн сервис в три шага:
    • Ввести функцию, для которой надо найти производную
    • Ввести найденную первую производную в форму
    • Ввести найденную вторую производную функции в форму
    Перейти: Онлайн сервис "Третья производная функции" →

    Введите функцию, заданную в неявном виде, вы получите соответствующую производную

    Это он-лайн сервис в три шага:

    • Ввести функцию x = x(t)
    • Ввести функцию y = y(t)

    Перейти: Онлайн сервис "Производной параметрической функции" →

    Производная сложной функции

    Производную сложной функции онлайн вы сможете вычислить с помощью калькулятора производных здесь

    Таблица производных

    Вы также можете воспользоваться таблицей производных, чтобы самостоятельно вычислить любую производную, перейти:

    www.kontrolnaya-rabota.ru

    Производная функции: основные понятия и определения

    Пусть задана функция y = f(x). Рассмотрим два значения x_0 (исходное) и x (новое) из области определения функции.

    ОПРЕДЕЛЕНИЕ Разность  x - x_0 называется приращением аргумента в точке x_0 и обозначается \Delta x («дельта икс»):

        \[ 	\Delta x = x - x_0 	\]

    Замечание. Символ \Delta x рассматривается как единый, а не представляет собой произведение, то есть \Delta x \ne \Delta \cdot x .

    Значение рассматриваемой функции в точке x_0 равно f(x_0). Зададим аргументу x приращение \Delta x. Получим значение функции в новой точке f(x + \Delta x).

    Приращение функции в точке

    ОПРЕДЕЛЕНИЕ Приращением функции y = f(x) в точке x_0, соответствующее приращению аргумента \Delta x = x - x_0, называется величина

        \[ 	\Delta y = f(x_0 + \Delta x) - f(x_0) 	\]

    Определение производной

    Функция y = f(x)имеет производную на интервале (a; b), если производная f'(x) существует в каждой точке этого интервала.

    Левая и правая производные функции

    Основные теоремы производных

    ТЕОРЕМА (О непрерывности функции в точке.) Если функция y = f(x) имеет конечную производную в точке x_0 , то она непрерывна в этой точке.

    Замечание. Обратное заключение не всегда верно: если функция y = f(x) непрерывна в некоторой точке x_0 , то она может и не иметь производной в этой точке.

    ТЕОРЕМА (О необходимом и достаточном условии дифференцируемости.) Для того чтобы функция y = f(x) была дифференцируемой в точке x, необходимо и достаточно, чтобы y = f(x) имела в точке конечную производную.

    Теорема устанавливает, что для функции y = f(x) дифференцируемость в данной точке x и существование конечной производной в этой точке – понятия равносильные. Поэтому операцию нахождения производной называют также дифференцированием этой функции.

    Понравился сайт? Расскажи друзьям!

    ru.solverbook.com