Вероятность прохода ставки: как посчитать проходимость. Как рассчитывается вероятность


Как рассчитать вероятность?

Итак, поговорим на тему, которая интересует очень многих. В данной статье я вам отвечу на вопрос о том, как рассчитать вероятность события. Приведу формулы для такого расчета и несколько примеров, чтобы было понятнее, как это делается.

Что такое вероятность

Начнем с того, что вероятность того, что то или иное событие произойдет – некая доля уверенности в конечном наступлении какого-то результата. Для этого расчета разработана формула полной вероятности, позволяющая определить, наступит интересующее вас  событие или нет, через, так называемые, условные вероятности.  Эта формула выглядит так: Р = n/m, буквы могут меняться, но на саму суть это никак не влияет.

Примеры вероятности

На простейшем примере разберем эту формулу и применим ее. Допустим, у вас есть некое событие (Р), пусть это будет бросок игральной кости, то есть равносторонний кубик. И нам требуется подсчитать, какова вероятность выпадения на нем 2 очков. Для этого нужно число положительных событий (n), в нашем случае – выпадение 2 очков, на общее число событий (m). Выпадение 2 очков может быть только в одном случае, если на кубике будет по 2 очка, так как по другому, сумма будет больше, из этого следует, что n = 1. Далее подсчитываем число выпадения любых других цифр на кости, на 1 кости – это 1, 2, 3, 4, 5 и 6, следовательно, благоприятных случаев 6, то есть m = 6. Теперь по формуле делаем нехитрое вычисление Р = 1/6 и получаем, что выпадение на кости 2 очков равно 1/6, то есть вероятность события очень мала.

Еще рассмотрим пример на цветных шарах, которые лежат в коробке: 50 белых, 40 черных и 30 зеленых. Нужно определить какова вероятность вытащить шар зеленого цвета. И так, так как шаров этого цвета 30, то есть, положительных событий может быть только 30 (n = 30), число всех событий 120, m = 120 (по общему количеству всех шаров), по формуле рассчитываем, что вытащить зеленый шар вероятность равна будет Р = 30/120 = 0,25, то есть 25 % из 100. Таким же образом, можно вычислить и вероятность вытащить шар другого цвета (черного она будет 33%, белого 42%).

elhow.ru

Как посчитать процент вероятности прохода ставки 2018

Хотите узнать, какие математические шансы на успех вашей ставки? Тогда для вас есть две хорошие новости. Первая: чтобы посчитать проходимость, не нужно проводить сложные расчеты и тратить большое количество времени. Достаточно воспользоваться простыми формулами, работа с которыми займёт пару минут. Вторая: после прочтения этой статьи вы с лёгкостью сможете рассчитывать вероятность прохода любой вашей сделки.

Вероятность прохода ставки в букмекерской конторе

Чтобы верно определить проходимость, нужно сделать три шага:

  • Рассчитать процент вероятности исхода события по мнению букмекерской конторы;
  • Вычислить вероятность по статистическим данным самостоятельно;
  • Узнать ценность ставки, учитывая обе вероятности.

 Рассмотрим подробно каждый из шагов, применяя не только формулы, но и примеры.

Быстрый переход

Подсчёт вероятности, заложенной в букмекерские коэффициенты

Первый шаг – необходимо узнать, с какой вероятностью оценивает шансы на тот или иной исход сам букмекер. Ведь понятно, что кэфы букмекерские конторы не ставят просто так. Для этого пользуемся следующей формулой:

PБ=(1/K)*100%,

где PБ – вероятность исхода по мнению букмекерской конторы;

K – коэффициент БК на исход.

Процент прохода ставок

Допустим, на победу лондонского Арсенала в поединке против Баварии коэффициент 4. Это значит, что вероятность его виктории БК расценивают как (1/4)*100%=25%. Или же Джокович играет против Южного. На победу Новака множитель 1.2, его шансы равны (1/1.2)*100%=83%.

Так оценивает шансы на успех каждого игрока и команды сама БК. Осуществив первый шаг, переходим ко второму.

Расчёт вероятности события игроком

Второй пункт нашего плана – собственная оценка вероятности события. Так как мы не можем учесть математически такие параметры как мотивация, игровой тонус, то воспользуемся упрощённой моделью и будем пользоваться только статистикой предыдущих встреч. Для расчёта статистической вероятности исхода применяем формулу:

PИ=(УМ/М)*100%,

где PИ – вероятность события по мнению игрока;

УМ – количество успешных матчей, в которых такое событие происходило;

М – общее количество матчей.

Что означает проход в ставках

Чтобы было понятней, приведём примеры. Энди Маррей и Рафаэль Надаль сыграли между собой 14 матчей. В 6 из них был зафиксирован тотал меньше 21 по геймам, в 8 – тотал больше. Необходимо узнать вероятность того, что следующий поединок будет сыгран на тотал больше: (8/14)*100=57%. Валенсия сыграла на Месталье против Атлетико 74 матча, в которых одержала 29 побед. Вероятность победы Валенсии: (29/74)*100%=39%.

И это все мы узнаем только благодаря статистике предыдущих игр! Естественно, что на какую-то новую команду или игрока такую вероятность просчитать не получится, поэтому такая стратегия ставок подойдет только для матчей, в которых соперники встречаются не первый раз. Теперь мы умеем определять букмекерскую и собственную вероятности исходов, и у нас есть все знания, чтобы перейти к последнему шагу.

Определение ценности ставки

Ценность (валуйность) пари и проходимость имеют непосредственную связь: чем выше валуйность, тем выше шанс на проход. Рассчитывается ценность следующим образом:

V=PИ*K-100%,

где V – ценность;

PИ – вероятность исхода по мнению беттера;

K – коэффициент БК на исход.

Допустим, мы хотим поставить на победу Милана в матче против Ромы и подчитали, что вероятность победы «красно-черных» 45%. Букмекер предлагает нам на это исход коэффициент 2.5. Будет ли такое пари ценным? Проводим расчёты: V=45%*2.5-100%=12.5%. Отлично, перед нами ценная ставка с хорошими шансами на проход.

Возьмём другой случай. Мария Шарапова играет против Петры Квитовой. Мы хотим заключить сделку на победу Марии, вероятность которой по нашим расчетам 60%. Конторы предлагают на этот исход множитель 1.5. Определяем валуйность: V=60%*1.5-100=-10%. Как видим, ценности эта ставка не представляет и от неё следует воздержаться.

Проход в БК

Вероятность прохода ставки: заключение

При расчёте проходимости ставки мы использовали простую модель, которая базируется только на статистике. При подсчете вероятности желательно учитывать много разных факторов, которые в каждом виде спорта индивидуальны. Бывает, что именно не статистические факторы имеют больше влияния. Без этого было бы все просто и предсказуемо. Выбрав свою нишу, вы со временем научитесь принимать во внимание все эти нюансы и давать более точную оценку собственной вероятности событий, включая во внимание множество других влияний. Главное, любить то, чем вы занимаетесь, постепенно двигаться вперёд и шаг за шагом повышать своё мастерство. Удачи вам и успехов в захватывающем мире беттинга!

Вероятность прохода ставки: как посчитать проходимость

5 (100%) 1 голос

Трекбэк с Вашего сайта.

rushbet.ru

Формулы для вычисления вероятности событий

1.3.1. Последовательность независимых испытаний (схема Бернулли)

Предположим, что некоторый эксперимент можно проводить неоднократно при одних и тех же условиях. Пусть этот опыт производится n раз, т. е. проводится последовательность из n испытаний.

Определение. Последовательность n испытаний называют взаимно независимой, если любое событие, связанное с данным испытанием, не зависит от любых событий, относящихся к остальным испытаниям.

Допустим, что некоторое событие A может произойти с вероятностью p в результате одного испытания или не произойти с вероятностью q=1-p.

Определение. Последовательность из n испытаний образует схему Бернулли, если выполняются следующие условия:

  1. последовательность n испытаний взаимно независима,

2) вероятность события A не изменяется от испытания к испытанию и не зависит от результата в других испытаниях.

Событие A называют “ успехом” испытания, а противоположное событие - “неудачей”. Рассмотрим событие

={ в n испытаниях произошло ровно m “успехов”}.

Для вычисления вероятности этого события справедлива формула Бернулли

p() = , m = 1, 2, …, n , (1.6)

где - число сочетаний из n элементов по m :

= =.

Пример 1.16. Три раза подбрасывают кубик. Найти:

а) вероятность того, что 6 очков выпадет два раза;

б) вероятность того, что число шестерок не появится более двух раз.

Решение. “Успехом” испытания будем считать выпадение на кубике грани с изображением 6 очков.

а) Общее число испытаний – n =3, число “успехов” – m = 2. Вероятность “успеха” - p=, а вероятность “неудачи” - q= 1 - =. Тогда по формуле Бернулли вероятность того, что результате трехразового бросания кубика два раза выпадет сторона с шестью очками, будет равна

.

б) Обозначим через А событие, которое заключается в том, что грань с числом очков 6 появится не более двух раз. Тогда событие можно представить в виде суммы трех несовместных событий А= ,

где В30 – событие, когда интересующая грань ни разу не появится,

В31 - событие, когда интересующая грань появится один раз,

В32 - событие, когда интересующая грань появится два раза.

По формуле Бернулли (1.6) найдем

p(А) = р () = p()=++=

=.

1.3.2. Условная вероятность события

Условная вероятность отражает влияние одного события на вероятность другого. Изменение условий, в которых проводится эксперимент, также влияет

на вероятность появления интересующего события.

Определение. Пусть A и B – некоторые события, и вероятность p(B)>0.

Условной вероятностью события A при условии, что “событие B уже произошло” называется отношение вероятности произведения данных событий к вероятности события, которое произошло раньше, чем событие, вероятность которого требуется найти. Условная вероятность обозначается как p(AB). Тогда по определению

p (A  B) = . (1.7)

Пример 1.17. Подбрасывают два кубика. Пространство элементарных событий состоит из упорядоченных пар чисел

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6).

В примере 1.16 было установлено, что событие A ={число очков на первом кубике > 4} и событие C ={сумма очков равна 8} зависимы. Составим отношение

.

Это отношение можно интерпретировать следующим образом. Допустим, что о результате первого бросания известно, что число очков на первом кубике > 4. Отсюда следует, что бросание второго кубика может привести к одному из 12 исходов, составляющих событие A:

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) .

При этом событию C могут соответствовать только два из них (5,3) (6,2). В этом случае вероятность события C будет равна . Таким образом, информация о наступлении событияA оказала влияние на вероятность события C.

      1. Вероятность произведения событий

Теорема умножения

Вероятность произведения событий A1 A2 An определяется формулой

p(A1 A2 An) = p(A1) p(A2  A1))p(An  A1A2An-1). (1.8)

Для произведения двух событий отсюда следует, что

p(AB) = p(A B) p{B) = p(B A) p{A). (1.9)

Пример 1.18. В партии из 25 изделий 5 изделий бракованных. Последовательно наугад выбирают 3 изделия. Определить вероятность того, что все выбранные изделия бракованные.

Решение. Обозначим события:

A1 = {первое изделие бракованное},

A2 = {второе изделие бракованное},

A3 = {третье изделие бракованное},

A = {все изделия бракованные}.

Событие А есть произведение трех событий A = A1 A2 A3 .

Из теоремы умножения (1.6) получим

p(A) = р( A1 A2 A3 ) =p(A1) p(A2  A1))p(A3  A1A2).

Классическое определение вероятности позволяет найти p(A1) – это отношение числа бракованных изделий к общему количеству изделий:

p(A1)=;

p(A2) – это отношение числа бракованных изделий, оставшихся после изъятия одного, к общему числу оставшихся изделий:

p(A2  A1))=;

p(A3 ) – это отношение числа бракованных изделий, оставшихся после изъятия двух бракованных, к общему числу оставшихся изделий:

p(A3  A1A2)=.

Тогда вероятность события A будет равна

p(A) ==.

studfiles.net

Как рассчитать вероятность события?

Наш ответ

Понимаю, что всем хочется заранее знать, как завершится спортивное мероприятие, кто одержит победу, а кто проиграет. Обладая подобной информацией, можно без страха делать ставки на спортивные мероприятия. Но можно ли вообще и если да, то как рассчитать вероятность события?

Вероятность – это величина относительная, поэтому не может с точностью говорить о каком-либо событии. Данная величина позволяет проанализировать и оценить необходимость совершения ставки на то или иное соревнование. Определение вероятностей – это целая наука, требующая тщательного изучения и понимания.

Коэффициент вероятности в теории вероятности

В ставках на спорт есть несколько вариантов исхода соревнования:

  • победа первой команды;
  • победа второй команды;
  • ничья;
  • тотал.

У каждого исхода соревнования есть своя вероятность и частота, с которой данное событие совершится при условии сохранения начальных характеристик. Как уже говорили ранее, невозможно точно рассчитать вероятность какого-либо события – оно может совпасть, а может и не совпасть. Таким образом, ваша ставка может как выиграть, так и проиграть.

Точного 100% предугадывания результатов соревнования не может быть, так как на исход матча влияет множество факторов. Естественно, и букмекеры не знают заранее исход матча и лишь предполагают результат, принимая решение на своей системе анализа и предлагают определенные коэффициенты для ставок.

Как посчитать вероятность события?

Допустим, что коэффициент букмекера равен 2. 1/2 – получаем 50%. Получается, что коэффициент 2 равен вероятности 50%. По тому же принципу можно получить безубыточный коэффициент вероятности – 1/вероятность.

Многие игроки думают, что после нескольких повторяющихся поражений, обязательно произойдет выигрыш — это ошибочное мнение. Вероятность выигрыша ставки не зависит от количества поражений. Даже если вы выбрасываете несколько орлов подряд в игре с монеткой, вероятность выбрасывания решки останется прежней – 50%.

bookmakersmobile.ru

Что такое условная вероятность и как ее правильно рассчитывать?

Нередко в жизни мы сталкиваемся с тем, что нужно оценить шансы наступления какого-либо события. Стоит ли покупать лотерейный билет или нет, каков будет пол третьего ребенка в семье, будет ли завтра ясная погода или снова пойдет дождь – таких примеров можно привести бесчисленное множество. В самом простом случае следует разделить число благоприятных исходов на общее число событий. Если в лотерее 10 билетов выигрышных, а всего их 50, то шансы получить приз равны 10/50 = 0,2, то есть 20 против 100. А как поступать в том случае, если есть несколько событий, и они тесно связаны между собой? В этом случае нас будет интересовать уже не простая, а условная вероятность. Что это за величина и как ее можно посчитать – об этом как раз и будет рассказано в нашей статье.условная вероятность

Понятие

Условная вероятность – это шансы наступления определенного события при условии, что другое связанное с ним событие уже произошло. Рассмотрим простой пример с бросанием монетки. Если жеребьевки еще не было, то шансы выпадения орла или решки будут одинаковыми. Но если раз пять подряд монетка ложилась гербом вверх, то согласитесь ожидать 6-го, 7-го, а тем более 10-го повторения такого исхода будет нелогично. С каждым повторным разом выпадения орла, шансы появления решки растут и рано или поздно она-таки выпадет.формула условной вероятности

Формула условной вероятности

Давайте теперь разберемся с тем, как эта величина рассчитывается. Обозначим первое событие через В, а второе через А. Если шансы наступления В отличны от нуля, то тогда будет справедливым следующее равенство:

Р (А|В) = Р (АВ) / Р (В), где:

  • Р (А|В) – условная вероятность итога А;
  • Р (АВ) – вероятность совместного появления событий А и В;
  • Р (В) – вероятность события В.

Слегка преобразовав данное соотношение получим Р (АВ) = Р(А|В) * Р (В). А если применить метод индукции, то можно вывести формулу произведения и использовать ее при произвольном числе событий:

Р (А1, А2, А3,…Ап) = Р (А1|А2…Ап)*Р(А2|А3…Ап) * Р (А3|А4…Ап)… Р (Ап-1|Ап) * Р (Ап).

Практика

Чтобы было легче разобраться с тем, как рассчитывается условная вероятность события, рассмотрим парочку примеров. Предположим имеется ваза, в которой находятся 8 шоколадных конфет и 7 мятных. По размерам они одинаковы и наугад последовательно вытаскиваются две из них. Какие будут шансы того, что обе из них окажутся шоколадными? Введем обозначения. Пусть итог А означает, что первая конфета шоколадная, итог В – вторая конфета шоколадная. Тогда получится следующее:

Р (А) = Р (В) = 8 / 15,

Р (А|В) = Р (В|А) = 7 / 14 = 1/2,

Р (АВ) = 8 /15 х 1/2 = 4/15 ≈ 0,27

Рассмотрим еще один случай. Предположим, есть двухдетная семья и нам известно, что, по крайней мере, один ребенок является девочкой. условная вероятность событияКакова условная вероятность того, что мальчиков у этих родителей пока нет? Как и в предыдущем случае, начнем с обозначений. Пусть Р (В) – вероятность того, что в семье есть хотя бы одна девочка, Р (А|В) – вероятность того, что второй ребенок тоже девочка, Р (АВ) – шансы того, что в семье две девочки. Теперь произведем расчёты. Всего может быть 4 разных комбинаций пола детей и при этом лишь в одном случае (когда в семье два мальчика), девочки среди детей не будет. Поэтому вероятность Р (В) = 3/4, а Р (АВ) = 1/4. Тогда следуя нашей формуле получим:

Р (А|В) = 1/4 : 3/4 = 1/3.

Интерпретировать результат можно так: если бы нам не было б известно о поле одного из детей, то шансы двух девочек были бы 25 против 100. Но поскольку мы знаем, что один ребенок девочка, вероятность того, что в семье мальчиков нет, возрастает до одной третьей.

fb.ru

Теория вероятностей, действия над вероятностями

Необходимость в действиях над вероятностями наступает тогда, когда известны вероятности некоторых событий, а вычислить нужно вероятности других событий, которые связаны с данными событиями.

Сложение вероятностей используется тогда, когда нужно вычислить вероятность объединения или логической суммы случайных событий.

Сумму событий A и B обозначают A + B или A ∪ B. Суммой двух событий называется событие, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий. Это означает, что A + B – событие, которое наступает тогда и только тогда, когда при наблюдении произошло событие A или событие B, или одновременно A и B.

Если события A и B взаимно несовместны и их вероятности даны, то вероятность того, что в результате одного испытания произойдёт одно из этих событий, рассчитывают, используя сложение вероятностей.

Теорема сложения вероятностей. Вероятность того, что произойдёт одно из двух взаимно несовместных событий, равна сумме вероятностей этих событий:

       (3)

Например, на охоте произведены два выстрела. Событие А – попадание в утку с первого выстрела, событие В – попадание со второго выстрела, событие (А + В) – попадание с первого или второго выстрела или с двух выстрелов. Итак, если два события А и В – несовместные события, то А + В – наступление хотя бы одного из этих событий или двух событий.

Можно рассчитать как классические, так и статистические вероятности.

Пример 1. В ящике 30 мячиков одинаковых размеров: 10 красных, 5 синих и 15 белых. Вычислить вероятность того, что не глядя будет взят цветной (не белый) мячик.

Решение. Примем, что событие А – «взят красный мячик», а событие В – «взят синий мячик». Тогда событие - «взят цветной (не белый) мячик». Найдём вероятность события А:

и события В:

События А и В – взаимно несовместные, так как если взят один мячик, то нельзя взять мячики разных цветов. Поэтому используем сложение вероятностей:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей".

Теорема сложения вероятностей для нескольких несовместных событий. Если события составляют полное множество событий, то сумма их вероятностей равна 1:

Сумма вероятностей противоположных событий также равна 1:

Противоположные события образуют полное множество событий, а вероятность полного множества событий равна 1.

Вероятности противоположных событий обычно обозначают малыми буквами p и q. В частности,

из чего следуют следующие формулы вероятности противоположных событий:

и .

Пример 2. Цель в тире разделена на 3 зоны. Вероятность того что некий стрелок выстрелит в цель в первой зоне равна 0,15, во второй зоне – 0,23, в третьей зоне – 0,17. Найти вероятность того, что стрелок попадет в цель и вероятность того, что стрелок попадёт мимо цели.

Решение: Найдём вероятность того, что стрелок попадёт в цель:

Найдём вероятность того, что стрелок попадёт мимо цели:

 

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей".

Два случайных события называются совместными, если наступление одного события не исключает наступления второго события в том же самом наблюдении. Например, при бросании игральной кости событием А считается выпадение числа 4, а событием В – выпадение чётного числа. Поскольку число 4 является чётным числом, эти два события совместимы. В практике встречаются задачи по расчёту вероятностей наступления одного из взаимно совместных событий.

Теорема сложения вероятностей для совместных событий. Вероятность того, что наступит одно из совместных событий, равна сумме вероятностей этих событий, из которой вычтена вероятность общего наступления обоих событий, то есть произведение вероятностей. Формула вероятностей совместных событий имеет следующий вид:

           

Поскольку события А и В совместимы, событие А + В наступает, если наступает одно из трёх возможных событий: или АВ. Согласно теореме сложения несовместных событий, вычисляем так:

         (5)

Событие А наступит, если наступит одно из двух несовместных событий:  или АВ. Однако вероятность наступления одного события из нескольких несовместных событий равна сумме вероятностей всех этих событий:

Поэтому

                              (6)

Аналогично:

Поэтому

                             (7)

Подставляя выражения (6) и (7) в выражение (5), получаем формулу вероятности для совместных событий:

             (8)

При использовании формулы (8) следует учитывать, что события А и В могут быть:

  • взаимно независимыми;
  • взаимно зависимыми.

Формула вероятности для взаимно независимых событий:

Формула вероятности для взаимно зависимых событий:

Если события А и В несовместны, то их совпадение является невозможным случаем и, таким образом, P(AB) = 0. Четвёртая формула вероятности для несовместных событий такова:

Пример 3. На автогонках при заезде на первой автомашине вероятность победить , при заезде на второй автомашине . Найти:

  • вероятность того, что победят обе автомашины;
  • вероятность того, что победит хотя бы одна автомашина;

 

Решение.

1) Вероятность того, что победит первая автомашина, не зависит от результата второй автомашины, поэтому события А (победит первая автомашина) и В (победит вторая автомашина) – независимые события. Найдём вероятность  того, что победят обе машины:

2) Найдём вероятность того, что победит одна из двух автомашин:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей".

Умножение вероятностей используют, когда следует вычислить вероятность логического произведения событий.

При этом случайные события должны быть независимыми. Два события называются взаимно независимыми, если наступление одного события не влияет на вероятность наступления второго события.

Логическим произведением двух событий А и В, обозначаемым А ∩ В, называют событие, которое понимают как одновременное наступление событий А и В. Больше о сути логического произведения можно узнать в соответствующем месте статьи "Булева алгебра (алгебра логики)".

Теорема умножения вероятностей для независимых событий. Вероятность одновременного наступления двух независимых событий А и В равна произведению вероятностей этих событий и вычисляется по формуле:

                   (4)

Пример 4. Монету бросают три раза подряд. Найти вероятность того, что все три раза выпадет герб.

Решение. Вероятность того, что при первом бросании монеты выпадет герб , во второй раз , в третий раз . Найдём вероятность того, что все три раза выпадет герб:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий - на странице "Различные задачи на сложение и умножение вероятностей".

Вероятность того, что произойдёт хотя бы одно из взаимно независимых событий , можно вычислить путём вычитания из 1 произведения вероятностей противоположных событий , то есть по формуле:

Пример 5. Грузы доставляют тремя видами транспорта: речным, железнодорожным и автотранспортом. Вероятность того, что груз будет доставлен речным транспортом, составляет 0,82, железнодорожным транспортом 0,87, автотранспортом 0,90. Найти вероятность того, что груз будет доставлен хотя бы одним из трёх видов транспорта.

Решение. Найдём вероятности противоположных событий – того, что груз не будет доставлен одним из видов транспорта:

Теперь у нас есть всё, чтобы найти требуемую в условии задачи вероятность того, что груз будет доставлен хотя бы одним из трёх видов транспорта:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий - на странице "Различные задачи на сложение и умножение вероятностей".

Если наступление одного события влияет на вероятность наступления второго события, то события называют взаимно зависимыми.

Если события А и В взаимно зависимы, то условной вероятностью называют вероятность события В, принимая, что событие А уже наступило.

Теорема умножения вероятностей взаимно зависимых событий. Вероятность произведения двух событий равна вероятности одного из них, умноженной на условную вероятность другого при наличии первого, то есть вычисляется по формуле:

или

Пример 6. В ящике 26 лотерейных билетов, из которых 3 с выигрышем. Найти вероятности того, что первый билет будет с выигрышем, вероятность того, что второй билет будет с выигрышем при условии, что первого билета уже нет в ящике и вероятность того, что два взятые подряд билета будут с выигрышем.

Решение. Найдём вероятность того, что первый взятый билет будет с выигрышем:

Найдём вероятность того, что второй взятый билет будет с выигрышем при условии, что первого билета уже нет в ящике:

Найдём теперь вероятность того, что оба взятые подряд билеты будут с выигрышем, т.е. вероятность общего наступления двух зависимых событий, которая является произведением вероятности первого события и условной вероятности второго события:

  

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий - на странице "Различные задачи на сложение и умножение вероятностей".

function-x.ru

Как рассчитать вероятность в покере, готовая таблица

Для использования всех возможностей покерной математики, игроку необходимо научиться рассчитывать вероятности в покере. На основе них покерист получает возможность определять выгодность принятия решений в торгах в долгосрочной перспективе. Это является основной математической стратегии ведения игры. На первый взгляд, использование высшей математики в покере может показаться новичкам трудоемким умственным процессом. Однако вероятности выигрыша в покере рассчитывать не так уже и сложно! Подробная инструкция поможет Вам в этом!

Вероятности в покере – это показатели наступления какого-либо события – выигрыша, выпадения нужной карты. Используя количественную оценку вероятности, игрок может принимать математически обоснованные решения.

Для чего нужна теория вероятности в покере

Начинающие игроки, незнающие покерную математику, принимают решения, основываясь в большей степени на интуиции и умственных заключениях, не подкрепленных математическими данными. Например, даже неопытный игрок может предположить, что карманные два Туза имеют высокий потенциал. Однако, для большинства других карманных карт, например Туз-Десять или Валет-Десять, такой игрок не сможет точно оценить перспективность розыгрыша. Теория вероятности в покере позволяет принимать решения, основанные исключительно на математических вычислениях в любой ситуации.

Самое главное, что дает теория вероятности в покере – это расчет прибыльности решения в долгосрочной перспективе. Оценивая вероятность выигрыша в раздаче и финансовые риски или размер прибыли, игрок может точно узнать – будет ли прибыльным решение в долгосрочной перспективе и сколько дохода оно принесет.

Элементарные покерные вероятности

Некоторые покерные вероятности рассчитаны для конкретных событий. В процессе игры рассчитать их самостоятельно довольно трудно, поэтому для таких событий проще узнавать вероятности в покере из готовой таблицы. Например, шанс получить конкретные карты на префлопе или выиграть с определенными карманными картами в игре против нескольких оппонентов. Вам пригодятся следующие таблицы, из которых Вы сможете узнать покерные вероятности:

Шанс получения карманных карт

Игрок начинает действовать уже после получения карманных карт, а не до этого. Однако, благодаря этим показателям, он может построить представление о том – какова вероятность того, что соперник получил карманные карты сильнее, чем у него.

Вероятности выигрыша с конкретными картами

Данная таблица показывает шанс выиграть с конкретной рукой при игре против различного количества соперников. Данные показатели верны только при условии, что на префлопе противники ставят ва-банк. Однако на них можно ориентироваться при выборе стартовых рук.

Как рассчитать вероятность в покере

Наиболее важно уметь рассчитать вероятность в покере на флопе и последующих улицах торгов. Зная их, покерист может сравнить шансы на выигрыш с шансами банка. Покерные вероятности на префлопе рассчитываются следующим образом:

  • Игрок рассчитывает ауты – количество карт в колоде, которые могут сделать его руку победной. Например, если для построения Флеша ему не хватает одной карты, значит у него 9 аутов. Рассчитать это просто! В колоде 13 карт нужной масти и четыре уже лежат на столе, следовательно, в колоде осталось 9 карт, которые могут составить комбинацию (Аутов).
  • Рассчитывается вероятность на основании количества аутов. Сложную формулу можно заменить простой, которая позволяет получить довольно точные значения. Чтобы узнать вероятность улучшения руки на Терне, нужно умножить ауты на 2, а для Терна и Ривера – на 4.

Пример: Покерист на Флопе получил Флеш-Дро и ему нужна одна карта, чтобы составить Флеш. У него на это 9 Аутов! Значит, вероятность составить Флеш на Терне – 9х2=18%, а на Терне и Ривере – 9×4=36%. Быстро узнать вероятности в покере Вам поможет готовая таблица:

Для того чтобы рассчитать вероятность выигрыша в покере, необходимо научиться считать ауты. Подсчитывая их, важно учитывать и те карты, которые могут усилить руку соперника. Такие карты не следует включать в количество Аутов.

Вероятности и шансы банка

Собственно процентный показатель вероятности дает нам возможность оценить – сколько у нас шансов улучшить руку и выиграть. Но он также может помочь рассчитать выгодность решения в долгосрочной перспективе. Но для этого также нужно затронуть финансовую сторону ситуации – размер банка и требуемой ставки. На основании этих величин мы можем узнать шансы банка.

Шансы банка – это соотношение ставки к величине банка. Например, если в банке стоит 4$, еще 1$ поставил соперник и Вам требуется также поставить 1$, чтобы увидеть следующую карту, шансы банка будут рассчитываться следующим образом – 1$ (Ваша ставка)/4$ (банк)+1$(ставка соперника)+1$(Ваша ставка)=17%.

Зная шансы банка, Вы можете сравнить их с вероятностью улучшения руки (выигрыша). Например, если Вам необходимо 9 Аутов на составление Флеша, Вы имеете 18% на Терне его составить. При этом шансы банка равны 17%. Значит, вероятность выше, чем шансы банка! В этом случае ставку соперника следует колировать, так как действует следующее правило:

  • Если вероятность выше шансов банка, значит — решение будет приносить прибыль в долгосрочной перспективе. Ставку выгодно сделать;
  • Если вероятность ниже шансов банка, значит — решение будет приносить убыток в долгосрочной перспективе. Выгоднее сбросить карты.

Таким образом, теория вероятности в покере позволит Вам точно узнать – будет ли решение прибыльным на дистанции или нет.

Данная инструкция рассказывает – как рассчитать вероятности в покере. О подсчете аутов и шансов банка следует прочитать соответствующие более подробные статьи.

poker.ua