Как решать уравнения высших степеней. Уравнения высшей степени


Методы решения уравнений высших степеней

Методы решения уравнений высших степеней.

I) Решение уравнений с помощью деления в столбик.

Очевидно - корень уравнения

Очевидно - корень уравнения

Ответ: -5;2;3;4

II) Возвратные уравнения и к ним сводящиеся.

Уравнение называется возвратным, если в нем коэффициенты равноудаленные от концов совпадают, т.е. ,,

1) Возвратные уравнения четной степени.

т.к. - не является корнем уравнения, то разделим обе части уравнения на.

Введем замену.

Пусть ,, получим

;

Вернемся к замене.

или

корней нет

Ответ:

2) Возвратные уравнения нечетной степени.

Любое возвратное уравнение нечетной степени сводится к квадратному уравнению четной степени, т.к у любого возвратного ур–ия нечетной степени один из корней всегда равен –1

Очевидно - корень уравнения.

или

т.к - не является корнем уравнения, то разделим обе части

уравнения на

Введем замену.

Пусть ,,, получим

илиили

корней нет

Ответ: ,,

III) Уравнения вида, гдерешаются как возвратные.

IV) Замена переменных по явным признакам.

V) В следующих уравнениях используется “идея однородности”.

Пример №1

Введем замену.

Пусть ,, тогда

1) если , тогда, тогда

решений нет

2) Разделим обе части уравнения на , получим

Решим последнее уравнение, как квадратное относительно , получим

;

;

Вернемся к замене.

или

корней нет

Ответ:

Пример №2.

Пусть ,, тогда

Найдем

Составим систему:

Решая систему подстановкой, получим

или

корней нет ;

Ответ: ;

Пример №3.

- не является корнем уравнения

Разделим обе части уравнения на , получим

Введем замену.

Пусть , тогда

;

или

;;

Ответ: ;;;

VI) Уравнения вида, гдеэффективно решать перемножениеми, а затем делать замену.

VII) В уравнениях вида и в уравнениях к ним сводящимся, в знаменателях обоих дробей необходимо вынести х за скобки и сделать замену.

(1)

(2)

При переходе область определения уравнения сузилась на. Проверим, является ликорнем уравнения. Не является.

Введем замену.

Пусть ,, тогда

;

или

Ответ: ;

VIII) В уравнениях вида обе части уравнения делятся на

- не является корнем уравнения. Разделим на, получим

Введем замену.

Пусть ;, тогда

;

или

Ответ: ;

IX) Выделение полного квадрата.

Введем замену.

Пусть , тогда

;

Вернемся к замене.

или

корней нет

Ответ:

X) Решение уравнений с помощью формулы

или

корней нет

XI) Уравнения вида и к ним сводящиеся решаются при помощи замены

Введем замену.

Пусть , тогда

иликорней нет

;

Вернемся к замене.

или

Ответ: ;

XII) Решение уравнений относительно коэффициентов.

или

;- посторонний корень

корней нет

Ответ: ;

XIII) Метод разложения на простейшие дроби.

Ответ:

studfiles.net

Уравнения высших степеней

Рассмотрим решения уравнений с одной переменной степени выше второй.

Степенью уравнения Р(х) = 0 называется степень многочлена Р(х), т.е. наибольшая из степеней его членов с коэффициентом, не равным нулю.

Так, например, уравнение (х3 – 1)2 + х5 = х6 – 2 имеет пятую степень, т.к. после операций раскрытия скобок и приведения подобных получим равносильное уравнение х5 – 2х3 + 3 = 0 пятой степени.

Вспомним правила, которые понадобятся для решения уравнений степени выше второй.

Утверждения о корнях многочлена и его делителях:

1. Многочлен n-й степени имеет число корней не превышающее число n, причем корни кратности m встречаются ровно m раз.

2. Многочлен нечетной степени имеет хотя бы один действительный корень.

3. Если α – корень Р(х), то Рn(х) = (х – α) · Qn – 1(x), где Qn – 1(x) – многочлен степени (n – 1).

4. Всякий целый корень многочлена с целыми коэффициентами является делителем свободного члена.

5. Приведенный многочлен с целыми коэффициентами не может иметь дробных рациональных корней.

6. Для многочлена третьей степени

Р3(х) = ах3 + bx2 + cx + d возможно одно из двух: либо он разлагается в произведение трех двучленов

Р3(x) = а(х – α)(х – β)(х – γ), либо разлагается в произведение двучлена и квадратного трехчлена Р3(x) = а(х – α)(х2 + βх + γ).

7. Любой многочлен четвертой степени раскладывается в произведение двух квадратных трехчленов.

8. Многочлен f(x) делится на многочлен g(х) без остатка, если существует многочлен q(x), что f(x) = g(x) · q(x). Для деления многочленов применяется правило «деления уголком».

9. Для делимости многочлена P(x) на двучлен (x – c) необходимо и достаточно, чтобы число с было корнем P(x) (Следствие теоремы Безу).

10. Теорема Виета: Если х1, х2, …, хn – действительные корни многочлена

Р(х) = а0хn + а1хn - 1 + … + аn, то имеют место следующие равенства:

х1 + х2 +  …  + хn = -а1/а0,

х1 · х2 + х1 · х3 + … + хn – 1 · хn = a2/а0,

х1 · х2 · х3 + … + хn – 2 · хn – 1 · хn = -a3 / а0,

х1 · х2 · х3 · хn = (-1)nan / а0.

Решение примеров

Пример 1.

Найти остаток от деления Р(х) = х3 + 2/3 x2 – 1/9 на (х – 1/3).

Решение.

По следствию из теоремы Безу: «Остаток от деления многочлена на двучлен (х – с) равен значению многочлена от с». Найдем Р(1/3) = 0. Следовательно, остаток равен 0 и число 1/3 – корень многочлена.

Ответ: R = 0.

Пример 2.

Разделить «уголком» 2х3 + 3x2 – 2х + 3 на (х + 2). Найти остаток и неполное частное.

Решение:

2х3 + 3x2 – 2х + 3| х + 2

2х3 + 4x2               2x2 – x

         -x2 – 2x

         -x2 – 2x

                        3      

Ответ: R = 3; частное: 2х2 – х.

Основные методы решения уравнений высших степеней

1. Введение новой переменной

Метод введения новой переменной уже знаком на примере биквадратных уравнений. Он заключается в том, что для решения уравнения f(x) = 0 вводят новую переменную (подстановку) t = xn или t = g(х) и выражают f(x) через t, получая новое уравнение r(t). Решая затем уравнение r(t), находят корни:

(t1, t2, …, tn). После этого получают совокупность n уравнений q(x) = t1, q(x) = t2, … , q(x) = tn, из которых находят корни исходного уравнения.

Пример 1.

(х2 + х + 1)2 – 3х2 – 3x – 1 = 0.

Решение:

(х2 + х + 1)2  – 3(х2 + x) – 1 = 0.

(х2 + х + 1)2  – 3(х2 + x + 1) + 3 – 1 = 0.

Замена (х2 + х + 1) = t.

t2 – 3t + 2 = 0.

t1 = 2, t2 = 1. Обратная замена:

х2 + х + 1 = 2 или х2 + х + 1 = 1;

х2 + х - 1 = 0 или х2 + х = 0;

Ответ: Из первого уравнения: х1, 2 = (-1 ± √5)/2, из второго: 0 и -1.

2. Разложение на множители методом группировки и формул сокращенного умножения

Основа данного метода также не нова и заключается в группировке слагаемых таким образом, чтобы каждая группа содержала общий множитель. Для этого иногда приходится применять некоторые искусственные приемы.

Пример 1.

х4 – 3x2 + 4х – 3 = 0.

Решение.

Представим - 3x2 = -2x2 – x2 и сгруппируем:

(х4 – 2x2) – (x2 – 4х + 3) = 0.

(х4 – 2x2 +1 – 1) – (x2 – 4х + 3 + 1 – 1) = 0.

(х2 – 1)2 – 1 – (x – 2)2 + 1 = 0.

(х2 – 1)2 – (x – 2)2 = 0.

(х2 – 1 – х + 2)(х2 – 1 + х - 2) = 0.

(х2 – х + 1)(х2 + х – 3) = 0.

х2 – х + 1 = 0 или х2 + х – 3 = 0.

Ответ: В первом уравнении нет корней, из второго: х1, 2 = (-1 ± √13)/2.

3. Разложение на множитель методом неопределенных коэффициентов

Суть метода состоит в том, что исходный многочлен раскладывается на множители с неизвестными коэффициентами. Используя свойство, что многочлены равны, если равны их коэффициенты при одинаковых степенях, находят неизвестные коэффициенты разложения.

Пример 1.

х3 + 4x2 + 5х + 2 = 0.

Решение.

Многочлен 3-й степени можно разложить в произведение линейного и квадратного множителей.

х3 + 4x2 + 5х + 2 = (х – а)(x2 + bх + c),

х3 + 4x2 + 5х + 2 = х3 +bx2 + cх – ax2 – abх – ac,

х3 + 4x2 + 5х + 2 = х3 + (b – a)x2 + (cх – ab)х – ac.

Решив систему:

{b – a = 4,{c – ab = 5,{-ac = 2,

получим

{a = -1,{b = 3,{c = 2, т.е.

х3 + 4x2 + 5х + 2 = (х + 1)(x2 + 3х + 2).

Корни уравнения (х + 1)(x2 + 3х + 2) = 0 находятся легко.

Ответ: -1; -2.

4. Метод подбора корня по старшему и свободному коэффициенту

Метод опирается на применение теорем:

1) Всякий целый корень многочлена с целыми коэффициентами является делителем свободного члена.

2) Для того, чтобы несократимая дробь p/q (p – целое, q – натуральное) была корнем уравнения с целыми коэффициентами, необходимо, чтобы число p было целым делителем свободного члена а0, а q – натуральным делителем старшего коэффициента.

Пример 1.

6х3 + 7x2 – 9х + 2 = 0.

Решение:

2 : p = ±1, ±2

6 : q = 1, 2, 3, 6.

Следовательно, p/q = ±1, ±2, ±1/2, ±1/3, ±2/3, ±1/6.

Найдя один корень, например – 2, другие корни найдем, используя деление уголком, метод неопределенных коэффициентов или схему Горнера.

Ответ: -2; 1/2; 1/3.

 Остались вопросы? Не знаете, как решать уравнения?Чтобы получить помощь репетитора – зарегистрируйтесь.Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Уравнения высших степеней

 

Уравнение вида:

, (1)

где называется уравнением n-ой степени.

Если , уравнение называется линейным.

Если , уравнение называется квадратным.

Если , уравнение называется однородным.

Основными методами решения уравнений типа (1) при являются:

1) метод разложения многочлена в левой части уравнения (1) на множители и сведение к равносильной совокупности уравнений;

2) метод замены переменной, в результате применения которого уравнение (1) заменяется равносильным уравнением, степень которого ниже, чем n;

3) поиск корней среди делителей свободного члена.

Рассмотрим некоторые виды уравнений (1) и их решения.

Уравнения вида

решаются вынесением общего множителя за скобки:

и сведением к совокупности:

Уравнение вида

, , (2)

решаем заменой . Получаем уравнение , которое решается как квадратное. Находим его корни (если такие существуют) и возвращаемся к старой переменной.

При уравнение (2) имеет вид

– биквадратное уравнение.

Уравнение

, (3)

где сводится к биквадратному уравнению заменой: .

Уравнение

, (4)

где и таковы, что и сводится к биквадратному заменой

или при к уравнению:

заменой

;

Уравнение

, (5)

где и делением на (т.к. – не является корнем) сводится к равносильному ему уравнению:

,

далее заменой оно сводится к квадратному уравнению.

Уравнение

,

где и А таковы, что сводится к уравнению вида (5) после попарного перемножения выражений в скобках: .

Уравнения вида

, (6)

где , называются симметрическими уравнениями третьей степени.

Так как

, то уравнение (5) равносильно совокупности уравнений:

Уравнения вида

, (7)

где , называются симметрическими уравнениями четвертой степени.

Так как – не является корнем уравнения (7), то деление обеих частей уравнения (7) на приводит его к уравнению:

или

.

Далее заменяем и сводим его к квадратному уравнению.

 

Пример 1. Решить уравнение .

Решение.

Выносим общий множитель за скобки:

.

Получаем совокупность уравнений

Ее решение дает три корня:

Пример 2. Решить уравнение

.

Решение.

Заменяем и приходим к уравнению

.

Последнее уравнение имеет корни

Возвращаемся к переменной х:

Решаем полученные квадратные уравнения и приходим к ответу:

Пример 3. .

Решение.

Задано уравнение вида (3). Заменяем

, т.е. . Подставим это значение в заданное уравнение:

.

После упрощения имеем

. Дополним до полного квадрата суммы

После упрощения уравнение приобретает вид

, т.е. .

Его решением является лишь .

Возвращаясь к переменной х, получим , что приводит к ответу .

Пример 4. .

Решение.

Имеем уравнение вида (4).

Так как и , перемножим попарно выражения в 1-й и 2-й скобках, а также в 3-й и 4-й. Получим

.

Заменяем .

Поскольку , и приходим к уравнению

.

Решая его как квадратное, получим корни:

Возвращаемся к переменной х:

Первое квадратное уравнение полученной совокупности не имеет корней, т.к. , а второе имеет корни

что и будет ответом.

Пример 5.Решить уравнение

.

Решение.

Имеем уравнение вида (5). Поскольку не является его корнем (в чем можно убедиться подстановкой), то делим его почленно на . Получаем

.

Введем замену , которая приводит к уравнению

, т.е.

.

Находим корни и возвращаемся к переменной х:

Решаем полученную совокупность дробно-рациональных уравнений:

т.е.

Получаем в совокупности 4 корня:

Пример 6.Решить уравнение .

Решение.

Это уравнение 3-й степени. Разложим на множители многочлен в правой части. Для этого рассмотрим делители свободного члена:

. Подстановкой находим, что – корень этого многочлена. Значит, многочлен разделится нацело на .

Воспользуемся правилом деления «углом»:

Данное уравнение равносильно уравнению:

,

решение которого сводится к совокупности

Квадратное уравнение не имеет корней, а поэтому получаем единственный корень .

Пример 8.Решить уравнение .

Решение.

Данное уравнение является симметрическим уравнением 4-й степени вида (7). Поскольку не является его корнем, то делим это уравнение почленно на . Приходим к уравнению

.

Заменяем

,

соответственно,

и .

Приходим к уравнению вида

, т.е.

.

Находим корни

и возвращаемся к переменной х:

После упрощения получаем

При этом первое уравнение последней совокупности не имеет корней, а второе имеет два корня

что и является ответом.

 

Задания для самостоятельного решения

I уровень

1.1. Решите уравнения:

1) ; 2) ;

3) ; 4) ;

5) ; 6) ;

7) ;

8) .

 

II уровень

2.1. Решите уравнения:

1) ; 2) ;

3) ; 4) ;

5) ;

6) ; 7) ;

8) ;

9) .

 

III уровень

3.1. Решите уравнения:

1) ; 2) ;

3) ; 4) ;

5) ;

6) ;

7) ;

8) ; 9) ;

10)

 

 

Похожие статьи:

poznayka.org

Уравнения высших степеней - Решение

Если уравнение имеет вид:

                                                             

                                                          ax2n + bxn +  c = 0  ,

 

оно приводится к квадратному уравнению заменой:

 

                                                               xn = z ;

                                                                                                         

действительно, после этой замены получаем:   az 2+ bz + c = 0 .

 

П р и м е р .  Рассмотрим уравнение:

 

                                                        x 4– 13 x 2+ 36 = 0 .

 

                       После замены:  x 2= z  получим уравнение:                                                       

 

                                                                                   z 2– 13 z + 36 = 0 .

 

                       Его корни:  z1= 4  и  z2= 9. Теперь решаем  уравнения:                                                                   

                              x 2=4  и  x 2= 9 . Они имеют соответственно корни:

                       x1 = 2 ,  x2 = – 2 ,   x3 = 3 ;   x4  =– 3 .  Эти числа являются

                       корнями исходного уравнения ( проверьте, пожалуйста! ).

 

Любое уравнение вида:  ax 4 + bx 2 + c = 0  называется биквадратным.

Оно приводится к квадратному уравнению заменой:

 

                                                          x2 = z .                                                                                                         

 

П р и м е р .  Решить биквадратное уравнение:  3x 4– 123x 2+ 1200 = 0 .

 

Р е ш е н и е .  Заменяя:  x 2 = z ,  и решая уравнение:

                         3z 2– 123z + 1200 = 0, получаем: 

                        

 

                         отсюда,  z1 = 25 и  z2 = 16. Используя нашу замену, получим:

                          x 2 = 25 и  x 2 = 16,  отсюда,  x1 = 5,  x2 = – 5,  x3 = 4,  x4 = – 4.

textarchive.ru

Уравнения высших степеней

 

Методы решения уравнений высших степеней

 

  1. Решение уравнений с помощью деления в столбик
  2. Возвратные уравнения и к ним сводящиеся

·         Возвратные уравнения четной степени

·         Возвратные уравнения нечетной степени

  1. Уравнения вида, где
  2. Замена переменных по явным признакам
  3. В следующих уравнениях используется “идея однородности”

·                Пример №1

·                Пример №2

·                Пример №3

  1. Уравнения вида, где
  2. В уравнениях вида  и в уравнениях к ним сводящимся
  3. В уравнениях вида
  4. Выделение полного квадрата
  5. Решение уравнений с помощью формулы
  6. Уравнения вида  и к ним сводящиеся
  7. Решение уравнений относительно коэффициентов
  8. Метод разложения на простейшие дроби

 

I)                Решение уравнений с помощью деления в столбик

 

Очевидно  - корень уравнения

Очевидно  - корень уравнения

Ответ: -5;2;3;4

 

II) Возвратные уравнения и к ним сводящиеся

Уравнение называется возвратным, если в нем коэффициенты равноудаленные от концов совпадают, т.е. , ,

 

1)    Возвратные уравнения четной степени.

 

т.к.  - не является корнем уравнения, то разделим обе части уравнения на .

Введем замену.

Пусть , , получим

                    ;

Вернемся к замене.

                  или                

                                  

                                 корней нет

Ответ:

 

2) Возвратные уравнения нечетной степени

 

Любое возвратное уравнение нечетной степени сводится к квадратному уравнению четной степени, т.к у любого возвратного ур–ия нечетной степени один из корней всегда равен –1

Очевидно  - корень уравнения.

            или    

                                   т.к  - не является корнем уравнения, то разделим обе части

уравнения на

Введем замену.

Пусть , , , получим

            или                                           или                

                                                                        

                                                           

корней нет                                                                

Ответ: , ,

 

II)           Уравнения вида, где

 

решаются как возвратные.

 

 

IV) Замена переменных по явным признакам

 

 

V) В следующих уравнениях используется “идея однородности”

 

Пример №1

 

Введем замену.

Пусть , , тогда

1) если , тогда , тогда

 решений нет

2) Разделим обе части уравнения на , получим

Решим последнее уравнение, как квадратное относительно , получим

;

;

Вернемся к замене.

                    или                

                                               корней нет

Ответ:

 

Пример №2

 

                               

Пусть , , тогда

Найдем

Составим систему:

Решая систему подстановкой, получим

                                  или                            

                                                          

                                                       

корней нет                                                               ;

Ответ: ;

 

Пример №3

 

 - не является корнем уравнения

Разделим обе части уравнения на , получим

Введем замену.

Пусть , тогда

;

                        или                            

                                                         

;                                                            ;

Ответ: ; ; ;

VI) Уравнения вида, где

 

эффективно решать перемножением  и , а затем делать замену.

 

VII) В уравнениях вида  

и в уравнениях к ним сводящимся

 

в знаменателях обоих дробей необходимо вынести х за скобки и сделать замену.

                  (1)                              

             (2)

При переходе  область определения уравнения сузилась на . Проверим, является ли  корнем уравнения. Не является.

Введем замену.

Пусть , , тогда

;

                        или                            

                                                       

                                                                       

Ответ: ;

 

VIII) В уравнениях вида

 

 обе части уравнения делятся на

 - не является корнем уравнения. Разделим на , получим

Введем замену.

Пусть ; , тогда

;

                                или                            

                                                                    

Ответ: ;

 

IX) Выделение полного квадрата

 

                            

Введем замену.

Пусть , тогда

;

Вернемся к замене.

                               или                            

                                                       

                                                          корней нет

Ответ:

 

X) Решение уравнений с помощью формулы

 

                                   или                            

                                                                    корней нет

 

XI) Уравнения вида  и к ним сводящиеся

 

решаются при помощи замены

Введем замену.

Пусть , тогда

                                    или                             корней нет

;

Вернемся к замене.

                     или                

                                             

Ответ: ;

 

XII) Решение уравнений относительно коэффициентов

 

                         

                               или                            

                                                            

                                                             

                                                                 

;                                           - посторонний корень

корней нет                                                   

                                                                                             

Ответ: ;

 

XIII) Метод разложения на простейшие дроби

 

                                                      

Ответ:

© Gussnick corp.  2009 Н.В. Гусятников [email protected]

mmetodika.narod.ru

Уравнения высших степеней

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. В математике довольно часто встречаются уравнения высших степеней с целыми коэффициентами. Чтобы решить данного рода уравнения необходимо:

- определить рациональные корни уравнения;

- разложить на множители многочлен, который находится в левой части уравнения;

- найти корни уравнения.

решать уравнения высших степеней

Так же читайте нашу статью "Решить уравнения 4 степени онлайн решателем"

Допустим, нам дано уравнение следующего вида:

\[x^4+1/2x^3-5/2-3=0\]

Найдем все действительные его корни. Умножим левую и правую части уравнения на \[2^3:\]

\[2x^4+x^3-5x - 6=0\]

Выполним замену переменных \[y =2x:\]

\[2^4 \cdot x^4+2^3x^3-20 \cdot 2 \cdot x-48=0\]

\[y^4+y^3-20y-48=0\]

Таким образом, у нас получилось приведенное уравнение четвертой степени, которое решается по стандартному алгоритму: проверяем делители, проводим деление и в результате выясняем, что уравнение имеет два действительных корня \[y = -2, y=3\] и два комплексных. Получим следующий ответ нашего уравнения четвертой степени:

\[x=\frac{y}{2}=-\frac {2}{2}=-1\]

\[x=\frac {y}{2}=\frac {3}{2} \]

Где можно решить уравнение высших степеней онлайн решателем?

Решить уравнение вы можете на нашем сайте pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте: pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

pocketteacher.ru

Уравнения высших степеней — Мегаобучалка

Алгебраические уравнения

И Алгебраические неравенства

 

Уравнения высших степеней

 

Уравнение вида

(3.1)

где называется уравнением n-й степени.

Если уравнение называется линейным.

Если уравнение называется квадратным.

Если уравнение называется однородным.

Основными методами решения уравнений типа (3.1) при являются:

1) метод разложения многочлена в левой части уравнения (3.1) на множители и сведение к равносильной совокупности уравнений;

2) метод замены переменной, в результате применения которого уравнение (3.1) заменяется равносильным уравнением, степень которого ниже, чем n;

3) поиск корней среди делителей свободного члена.

Рассмотрим некоторые виды уравнений (3.1) и их решения.

Уравнения вида решаются вынесением общего множителя за скобки:

и сведением к совокупности:

Уравнение вида

(3.2)

решается заменой Получаем уравнение которое решается, как квадратное. Находим его корни (если такие существуют) и возвращаемся к старой переменной.

При уравнение (3.2) имеет вид:

– биквадратное уравнение.

Уравнение

(3.3)

где сводится к биквадратному уравнению заменой

Уравнение

(3.4)

где и А таковы, что и сводится к биквадратному уравнению заменой

или при к уравнению

заменой

Уравнение

(3.5)

где и делением на (так как – не является корнем) сводится к равносильному ему уравнению:

далее заменой оно сводится к квадратному уравнению.

Уравнение

где и А таковы, что сводится к уравнению вида (3.5) после попарного перемножения выражений в скобках:

Уравнения вида

(3.6)

где называются симметрическими уравнениями третьей степени.

Так как

то уравнение (3.5) равносильно совокупности уравнений:

Уравнения вида

(3.7)

где называются симметрическими уравнениями четвертой степени.

Так как не является корнем уравнения (3.7), то деление обеих частей уравнения (3.7) на приводит его к уравнению

или

Далее заменяем и сводим его к квадратному уравнению.

 

Пример 1. Решить уравнение

Решение. Выносим общий множитель за скобки:

Получаем совокупность уравнений

Ее решение дает три корня:

Пример 2. Решить уравнение

Решение. Заменяем и приходим к уравнению

Последнее уравнение имеет корни:

Возвращаемся к переменной х:

Решаем полученные квадратные уравнения и приходим к ответу:

 

Пример 3.Решить уравнение

Решение. Задано уравнение вида (3.3). Заменяем

т. е. Подставим это значение в заданное уравнение:

После упрощения имеем:

Дополним до полного квадрата суммы:

После упрощения уравнение приобретает вид:

т. е.

Его решением является лишь

Возвращаясь к переменной х, получим что приводит к ответу:

 

Пример 4.Решить уравнение

Решение. Имеем уравнение вида (3.4).

Так как то перемножим выражения во 2-й и 3-й скобках. Получим:

Заменяем

Поскольку приходим к уравнению

Решая его как квадратное, получим корни:

Возвращаемся к переменной х:

Первое квадратное уравнение полученной совокупности не имеет корней, так как а второе имеет корни что и будет ответом.

 

Пример 5.Решить уравнение

Решение. Имеем уравнение вида (3.5). Поскольку не является его корнем (в чем можно убедиться подстановкой), то делим его почленно на Получаем

Введем замену которая приводит к уравнению

т. е.

Находим корни и возвращаемся к переменной х:

Решаем полученную совокупность дробно-рациональных уравнений:

т. е.

Получаем в совокупности 4 корня:

 

Пример 6.Решить уравнение

Решение. Это уравнение 3-й степени. Разложим на множители многочлен в правой части. Для этого рассмотрим делители свободного члена 16:

Подстановкой находим, что – корень этого многочлена. Следовательно, многочлен разделится нацело на

Воспользуемся правилом «деления углом»:

Данное уравнение равносильно уравнению

решение которого сводится к совокупности

Квадратное уравнение не имеет корней, а поэтому получаем единственный корень

 

Пример 7.Решить уравнение

Решение. Данное уравнение является симметрическим уравнением 4-й степени вида (3.7). Поскольку не является его корнем, то делим это уравнение почленно на Приходим к уравнению

Заменяем

соответственно,

и

Приходим к уравнению вида

т. е.

Находим корни:

и возвращаемся к переменной х:

После упрощения получаем:

При этом первое уравнение последней совокупности не имеет корней, а второе имеет два корня:

что и является ответом.

 

Задания

I уровень

1.1.Решите уравнение:

1) 2)

3) 4)

5) 6)

7) 8)

9) 10)

11) 12)

 

II уровень

2.1. Решите уравнение:

1) 2)

3) 4)

5) 6)

7) 8)

9) 10)

11)

12)

 

III уровень

3.1. Решите уравнение:

1) 2)

3) 4)

5) 6)

7)

8)

9)

10)

11)

12)

megaobuchalka.ru